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We study theoretically the dramatic enhancement of spontaneous emission in metamaterials with the hyperbolic
dispersion modeled as a cubic lattice of anisotropic resonant dipoles. We analyze the dependence of the Purcell
factor on the source position in the lattice unit cell and demonstrate that the optimal emitter positions needed to
achieve large Purcell factors and Lamb shifts are in the local field maxima. We show that the calculated Green
function has a characteristic crosslike shape, spatially modulated due to the structural discreteness. Our basic
microscopic theory provides fundamental insights into the rapidly developing field of hyperbolic metamaterials.

DOI: 10.1103/PhysRevB.86.035148 PACS number(s): 42.50.−p, 74.25.Gz, 78.70.−g

I. INTRODUCTION

The enhancement of the radiative decay rate of a source
placed in a microwave resonant cavity was first discussed
by Purcell in 1946 (Ref. 1) and is generally called the
Purcell effect.2 Engineering and enhancement of the light-
matter interaction in a nanostructured environment is the
focus of active research.3–9 In particular, the so-called hyper-
bolic metamaterials have attracted significant attention.10–12

Realizations of the regime of a hyperbolic medium with
negative components of the dielectric tensor have been
reported for magnetized plasma,13 graphite,14 metamaterials
based on nanorod assemblies15–17 and layered metal-dielectric
structures.4,18,19 In particular, hyperbolic dispersion can appear
when nanostructured media composed of small elementary
units are described within the effective-medium approximation
as a uniaxial material with the main components of the
effective dielectric or magnetic tensors of different sign. In
this regime, light wave vectors at a given frequency fill a
surface of hyperbolic shape, so that the area of the hyperbolic
isofrequency surface, giving the photonic density of states, is
infinite. As a result, the spontaneous emission rate becomes
infinite in an ideal hyperbolic medium.4,20

The detailed study of the Purcell enhancement of the
spontaneous emission rate in hyperbolic metamaterials has
attracted special attention most recently in view of a series of
experimental demonstrations.4,21–23 A number of theoretical
studies have also been performed for various models.24 In
particular, it has been shown that the Purcell factor should
not actually diverge, since it is determined by a cutoff in the
wave-vector space, stemming from spatial inhomogeneity of
the medium,25–27 the finite distance from the source to the
medium,28–30 nonlocality of the dielectric response,31 or the
finite size of the emitter.32

Since the basic solid-state model of either natural or
artificial materials is a periodic lattice of unit cells, here
we adopt this model and consider a hyperbolic material
as an infinite cubic crystal of interacting resonant point
dipoles. Similar models have been developed for various
systems including lattices of quantum dots,33,34 optical atomic

lattices,35–38 γ -ray resonant nuclear scattering,39 and the
discrete-dipole approximation of light scattering theory.40,41

This general approach, despite certain limitations, has also
been applied to lattices of split-ring resonators.42–46

In this paper, we study optical properties of an infinite cubic
crystal of resonant interacting point dipoles polarizable only in
one direction (see Fig. 1). This model allows us to reproduce
the hyperbolic isofrequency surfaces of uniaxial anisotropic
metamaterials and accounts for the discrete character of
metamaterials. Within this microscopic model of a hyperbolic
metamaterial, we investigate the influence of emitter position
within the unit cell of the metamaterial on its radiation
properties.

The paper is organized as follows. Section II outlines our
theoretical model and approach. The calculated dispersion and
lattice Green function are discussed in Sec. III. Section IV
is devoted to the numerical and analytical results on the
Purcell factor and Lamb shift in metamaterials with hyperbolic
dispersion.

II. DISCRETE-DIPOLE MODEL

We consider an infinite periodic cubic lattice rj of point
dipoles, characterized by the period a, and embedded in
vacuum. Our approach can be straightforwardly generalized to
allow for a background dielectric constant ε �= 1. The emitter
inside the lattice is modeled by a radiating dipole p0 placed in
the point r0. The structure’s geometry is sketched in Fig. 1. The
self-consistent electric field satisfies the following equation:

∇ × ∇ × E − q2 E = 4πq2 P, (1)

where q = ω/c is the wave vector at the frequency ω. The
quantity P in Eq. (1) is the net polarization of the lattice
dipoles and the emitter:

P = d0δ(r − r0) +
∑

j

pj δ(r − rj ). (2)
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FIG. 1. (Color online) Schematic illustration of the unit cell of
the cubic dipole lattice with embedded light source.

All the dipoles pj are characterized by the identical polariz-
ability tensor α̂:

pj = α̂Eext(rj ). (3)

Split rings, being the building blocks of metamaterials, should
be generally described by both magnetic and electric dipole
moments; see the comprehensive discussion in Ref. 47.
However, in the simplest approximation one can retain
only the magnetic polarizability, and the problem becomes
equivalent to the one considered here.42 Analytical values of
the polarizability for atoms and small dielectric or plasmonic
spheres are given, e.g., in Ref. 48, and the resonant polarization
of quantum dots is discussed in Ref. 7.

Our goal is to determine the total electric field and
polarizations induced in the structure by the radiating dipole
d0. This procedure includes field expansion over the Bloch
eigenmodes with wave vectors k, for which Eqs. (1) and (2) are
independent. The results in a coordinate space are obtained by
inverse Fourier transformation. In particular, the polarizations
of the lattice dipoles read

pj =
∫

(BZ)

V0d
3k

(2π )3
eik·rj α̂[1̂ − Ĉ(k)α̂]−1Ĝ0,k(−r0)d0, (4)

where V0 = a3 is the unit cell volume, the integration takes
place over the Brillouin zone (BZ), |km| < π/a, m = x,y,z,
and 1̂ is a 3 × 3 unit matrix. The radiating dipole position r0

enters Eq. (4) and thus determines the efficiency of the lattice
excitation. The quantity Ĉ in Eq. (4) is the tensor interaction
constant of the lattice, defined as43

Ĉ(k) = lim
r→0

[Ĝ0,k(r) − Ĝ0(r)] + 2iq3

3
1̂, (5)

where Ĝ0,k is the Green function of the photon with Bloch
vector k,

Ĝ0,k(r) =
∑

j

Ĝ0(r − rj )eik·rj (6)

and Ĝ0 is the free-photon Green function

Ĝ0(r) = [q2 + ∇∇]1̂
eiqr

r
. (7)

The infinite lattice sums (6) may be found either by the Ewald
summation49 or by the Floquet-type summation.43,50 We have
used the approach from Ref. 43, since it is preferential for fast
evaluation of the integral in Eq. (4). The electric field in the
structure is given by the sum of the waves emitted by all the
dipoles,

E(r) = Ĝ0(r − r0) p0 +
∑

j

Ĝ0(r − rj ) pj . (8)

Equation (8) by definition provides the Green function for the
source embedded in the dipole lattice. The second term in
Eq. (8) is given by Eq. (4) where eik·rj is replaced by Ĝ0,k(r).

From now we restrict ourselves to the case of uniaxial
dipoles, when the only nonzero component of the tensor α̂

is αzz. We assume that the radiating dipole d0 is also directed
along the z axis. The TM-polarized Bloch eigenmodes of the
system with given wave vector k are found43,45 from the poles
of Eq. (4)

1

αzz

− C(k) = 0, (9)

where C(k) ≡ Czz(k). Note that Eq. (9) is real for vanishing
losses, because the imaginary part of the interaction constant
(5) cancels out with the radiative decay term in the polariz-
ability:

1

αzz

= 1

α0,zz

− 2iq3

3
. (10)

Here, α0,zz is the so-called bare-dipole polarizability calculated
neglecting radiative decay.48 The effective-medium approx-
imation for the solutions of Eq. (9) are the extraordinary
TM-polarized modes with the dispersion given by51

q2 = k2
x + k2

y

εzz

+ k2
z . (11)

Here, εzz is the Maxwell-Garnett effective dielectric constant
of the hyperbolic medium

εzz = 1 + 1

V/(4πα0,zz) − 1/3
, (12)

in the same approximation εxx = εyy = 1.

III. DISPERSION AND GREEN FUNCTION

In this section we first discuss the dispersion of the Bloch
waves in the dipole lattice (Sec. III A) and then investigate
in detail the emission pattern of the dipole embedded in the
lattice (Sec. III B).

A. Isofrequency curves

Isofrequency curves in the (kz,kx) plane, found from
Eq. (9) for different polarizabilities α0,zz, are shown in Fig. 2.
Depending on the polarizability, the dispersion curves are
either elliptic or hyperbolic, in agreement with Eq. (12). The
curves are generally well described by the effective-medium
approximation Eq. (11). However, an intermediate “mixed”
regime is possible for α0,zz ≈ −1.3a3/(4π ) (blue dashed
curve), when two Bloch modes with hyperbolic and elliptic
dispersion coexist in the structure. Such isofrequency curves
cannot be described by the Maxwell-Garnett theory Eqs. (11)
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FIG. 2. (Color online) Isofrequency curves in the xz plane,
calculated for different dipole polarizabilities α0,zz. The normalized
polarizability 4πα0,zz/a

3 is indicated near each curve. The calculation
was performed at qa = 0.15π .

and (12), which predicts only one TM mode for a given
frequency. They were analyzed in Ref. 43 in more detail and
can be obtained in the effective-medium model when nonlocal
effects are taken into account.52

B. Green function

Here we will focus on the spatial distribution [Eq. (4)] of the
dipole moments |p(rj )| in the discrete lattice under the point-
dipole excitation. The results of calculations for the dipole
polarizabilities α0,zz = a3/(4π ) and α0,zz = −6a3/(4π ), cor-
responding to the elliptic and hyperbolic regimes, are shown
in Figs. 3 and 4, respectively. The calculation demonstrates
that the distribution is qualitatively different in the hyperbolic
regime: the pattern is strongly anisotropic and has a character-
istic crosslike shape; see Fig. 4. Moreover, in the hyperbolic

FIG. 3. (Color online) Spatial distribution of the dipole moments
|pz(r)|/p0 in the elliptic regime with α0,zz = a3/(4π ). The insets
schematically illustrate the geometry and the isofrequency surfaces
in wave-vector space. The calculation was performed at qa = 0.15π

and r0 = 0.5a ẑ.

FIG. 4. (Color online) Spatial distribution of the dipole moments
|pz(r)|/p0 in the hyperbolic regime, excited by the point emitter.
(a) and (b) show the distributions in the planes y = 0 and x = y,
respectively. The insets schematically illustrate the geometry and
the isofrequency surfaces in wave-vector space. The calculation was
performed at α0,zz = −6a3/(4π ) and the same other parameters as in
Fig. 3 .

case, the pattern depends on the azimuthal direction: it has
distinct vertical ripples in the plane y = 0 [Fig. 3(a)], which
are absent in the plane y = x [Fig. 3(b)].

To understand these results it is instructive to compare
them with the Green function in the effective-medium ap-
proximation (Fig. 5). This approximation allows one to obtain
the solution in a closed form.10,53 In the case of a vertical
orientation of the radiating dipole, p0 ‖ z, the Green function
reads

Eeff(r) = (q2 + ∇∇)p0 ẑ
eiqR

R
,

(13)
R =

√
εzz(x − x0)2 + εzz(y − y0)2 + (z − z0)2.

This is a generalization of Eq. (7) in the case of a uniaxial
medium. The relation between the electric field and the
polarization in the effective-medium model is local,

4π Peff = (εeff − 1)Eeff . (14)

It should be stressed that the effective-medium approximation
is not applicable on spatial scales smaller than the lattice
constant a. Consequently, the problem of a point radiating
dipole in a discrete structure cannot be reduced to the effective-
medium one. The effects of the radiating dipole position
within the unit cell are also beyond the effective-medium
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FIG. 5. (Color online) Spatial distribution of the polarization
Peff,z(r)/(p0a

3) induced by the point source in (a) an effective elliptic
medium with εzz = 2.5 and (b) an effective hyperbolic medium
with εzz = −1. The insets schematically illustrate the geometry and
the isofrequency surfaces in wave-vector space. The polarization is
evaluated at the discrete lattice sites rj in the xz plane. The other
calculation parameters are the same as in Fig. 3.

approximation. Thus, the results of the two models, discrete
and effective, may be compared only qualitatively.

The polarization (14) in Fig. 5 is evaluated at the discrete set
of square lattice points rj and the radiating dipole is located at
the point r0 = 0.5a ẑ; see the inset of Fig. 5(a). Figures 5(a) and
5(b) show the spatial distribution of the polarization Eq. (14)
for the values of the effective dielectric constants of εzz = 2.5
and εzz = −1, corresponding to Figs. 3 and 4, respectively. In
the case of the material with elliptic dispersion, the emission
pattern is qualitatively the same as for the isotropic medium.
The near field is concentrated at the emitter origin r = r0,
while the far field is emitted perpendicularly to the dipole
axis. The pattern changes dramatically in the hyperbolic case
[Fig. 5(b)]. The distribution has a distinct crosslike shape,
typical for a hyperbolic medium.10,13 In the elliptic case, the
only field singularity is that at the origin R = |r − r0| = 0.
In the hyperbolic medium this singular point becomes a
conical surface, where the field intensity is concentrated.
Radiated waves are propagating within the cone R2 > 0 and
are evanescent outside this cone. The energy flow directions
are normal to the isofrequency surfaces, so such a cone in

r space is a direct counterpart of the hyperbolic dispersion
curves in k space.

Comparing numerical and effective-medium results,
Figs. 3, 4, and 5, we see that in the elliptic case the Green
function is qualitatively the same as in the effective-medium
approximation. Weak spatial modulation of the dipole mo-
ments |p(rj )|, seen in Fig. 3, is related to the deviations from
the effective-medium theory Eq. (13), which, as mentioned
above, is not completely valid for the point excitation. The
distinct crosslike distribution of Fig. 4(a) is a fingerprint
of the hyperbolic regime, similarly to the effective-medium
approximation of Fig. 5(b). Comparing Figs. 5(b) and 4(a), we
see that in the discrete case the singularity in the effective-
medium solution Eq. (13) at the conical surface R = 0 is
smeared out and even vanishes at large enough distances,
where the effective-medium approximation also breaks down.
This is qualitatively explained by the presence of the wave-
vector cutoff ∼π/a. The second striking difference between
Fig. 4 and its effective-medium counterpart Fig. 5(b) is the
strong spatial modulation of the distribution in the y = 0
plane, manifested as vertical ripples. Such modulation is not
explained by the effective-medium approximation of Fig. 5(b).
The vertical ripples in Fig. 4(a) lying in the plane y = 0 have
period t in the x direction close to 2a. This allows us to
interpret them as the interference pattern of the Bloch waves
with wave vectors kx = ±2π/t ≡ ±π/a, corresponding to the
boundaries of the Brillouin zone. To check this hypothesis
we have plotted in Fig. 6 the isofrequency curves in the
�-X and �-M directions. Since dkz/dkx = 0 at kx = π/a (the
right panel of Fig. 6), there is a singularity in the density
of waves, that propagate along the x direction. This effect
enhances the contribution of the wave vectors kx = ±π/a and
promotes the vertical ripples. Isofrequency curves calculated
in the effective-medium approximation stay linear at the zone
boundary (the thin lines in Fig. 6), so the singularity is
absent and the ripples disappear. This has been additionally
verified by substituting the effective-medium approximation
[see Eq. (18) below] for the interaction constant in Eq. (4).
Thus, the ripples can be thought of as the manifestation of the
Van Hove band edge singularity54 in the Green function.55 For

FIG. 6. (Color online) Isofrequency curves of the dipole lattice in
the hyperbolic regime. Solid and thin lines correspond to the numer-
ical calculation and the effective-medium approximation Eq. (11),
respectively. The other parameters are the same as in Fig. 4. The inset
schematically indicates the Brillouin zone of the square lattice; the
point 	 corresponds to kx = ky = π/(

√
2a).
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FIG. 7. (Color online) Spatial distribution of the dipole moments
|pz(r)|/p0 in the mixed hyperbolic-elliptic regime with α0,zz =
−1.3a3/(4π ). The insets schematically illustrate the geometry and
the isofrequency surfaces in wave-vector space. The other calculation
parameters are the same as in Fig. 5.

the �-M direction the behavior of the isofrequency curves at
the Brillouin zone edge is different [Fig. 6(b)] and the density
of states singularity is absent, which explains the absence of
ripples in the plane y = x [Fig. 4(b)].

The discrete Green function calculated for the dipole po-
larizability α0,zz = −1.3a3/(4π ), corresponding to the mixed
elliptic-hyperbolic regime, is shown in Fig. 7. In this case
the ripples are absent, because the isofrequency curves do not
reach the Brillouin zone boundary kx = ±π/a; see the dashed
curve in Fig. 2. Far-field emission along the x direction is
possible due to the modes with elliptic dispersion, providing a
weak background to the field of the hyperbolic modes.

IV. PURCELL FACTOR

Here we investigate the effect of the discreteness on the
Purcell factor determining the characteristics of the sponta-
neous emission of the radiating dipole inside the material. The
Purcell factor f and the Lamb shift l for the radiating dipole
can be found from the Green function (8), evaluated at the
dipole origin6,7,56 (see also Ref. 57):

f + il = 1 + 3iEz(r0)

2q3p0
. (15)

Here, the dimensionless Lamb shift l is in fact just a radiative
correction to the resonance frequency of the radiating two-level
system, normalized to its free-space decay rate. Equation (15)
implies the weak-coupling regime, when the light-matter
interaction is considered perturbatively.8 Gathering Eqs. (15),
(8), and (4) together, we find the result in a compact form:

f + il = 3i

2q3

∫
(BZ)

V0d
3k

(2π )3

|Gk,zz(r0)|2
1/αzz − C(k) − i0

. (16)

The frequency ω, entering the wave vector q in Eq. (16), is
determined by the transition energy of the radiating dipole
d0. It is clear from the structure of Eq. (16) that the Purcell
factor is determined by the pole contribution, corresponding to
emission of photons with the dispersion given by Eq. (9). We

FIG. 8. (Color online) Purcell factor in the (a) hyperbolic and
(b) elliptic regimes as a function of the source coordinate z0 for
x0 = y0 = 0. The thick solid black, thin solid red, and dashed black
curves correspond to numerical calculations, the analytical results of
Eq. (20) (a) and Eq. (23) (b), and to a single dipole with corresponding
polarizability [Eq. (25)], respectively. The other parameters as the
same as in Fig. 4.

note that the first term on the right-hand side of Eq. (15) has
canceled out in Eq. (16) with the pole contribution in the free-
space Green function Gk,zz(r0) at q = k. We stress that, despite
the classical formulation of the problem, the results for the
emission rate and photon Green function may be equivalently
obtained by a quantum-mechanical calculation, using either
the Fermi golden rule7 or the local quantization framework.6

Numerical results for the dependence of the Purcell factor
on the radiating dipole position within the unit cell of the
structure are presented in Figs. 8 and 9. Figure 10 shows
the frequency dependence of the Purcell factor. The figures
demonstrate that the Purcell factor is much larger in the
hyperbolic than in the elliptic regime. It is very sensitive to
the dipole position and strongly increases when the dipole
approaches the lattice nodes. Before discussing these results
in more detail it is instructive to compared them with the
analytical theory.

FIG. 9. (Color online) (a) Purcell factor in the hyperbolic medium
as a function of the source position in the unit cell. (b) Calculation in
the single-dipole approximation Eq. (25). The calculation was carried
out at y0 = 0 and the same other parameters as in Fig. 4. The radiating
dipole coordinates change within the square 0 � x0 � 1, 0 � z0 � 1.
The colors correspond to a logarithmic scale, identical for both panels.
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FIG. 10. (Color online) Purcell factor in the hyperbolic (a) and
elliptic (b) regimes as a function of the frequency qa for r0 = 0.25a ẑ.
The notation and other parameters are the same as in Fig. 8.

A. Analytical results

Here we focus on the Purcell factor in the quasistatic limit
q 	 π/a. Equation (16) can be then reduced to

f = 3

2q3

V0|Gzz,stat(r0)|2
(2π )2

∫
dkxdky

∣∣∣∣dC(k)

dkz

∣∣∣∣
−1

kz(kx ,ky )

, (17)

where the interaction constant in the effective-medium approx-
imation reads45

C(k) = 4π

V0

q2 − k2
z

k2 − q2
+ 4π

3V0
+ 2iq3

3
. (18)

The integral over kz in Eq. (16) is determined by the residues of
the waves with ±kz(kx,ky), which are the solutions of Eq. (9)
at a given frequency. The integration over kx and ky in Eq. (17)
is restricted to those vectors within the two-dimensional
Brillouin zone for which such a solution exists. The quantity
Gzz,stat(r0) in Eq. (17) is the quasistatic approximation of the
Green function Eq. (6): Gzz,stat(r0) ≡ Gk,zz(r0)|k=0,q=0. The
value of Gzz,stat is determined by the near field of the lattice
dipoles, closest to the radiating one. The maximum Purcell
factor can then be expected when the source is located at the
vertical edge of the elementary cell, i.e., x0 = y0 = 0, z0 �= 0.

In this case Gzz,stat(z0) can be reduced to

Gzz,stat(z0) ≈ 2

z3
0

+ 2

(a − z0)3
(19)

and grows dramatically when the emitter approaches the lattice
node. Evaluating the derivative in Eq. (17) by means of Eq. (18)
and performing the integration, we obtain the analytical result
for the Purcell factor

fhyp = (ε − 1)2

32π2

(
kz,max

q

)3

|V0Gzz,stat(z)|2 (20)

in the hyperbolic medium. Here, kz,max 
 q is the cutoff for
the wave vector kz due to the finite extent of the Brillouin zone.
Its value depends on the effective dielectric constant,

kz,max ≈
{ π

a
, −1 � ε � 0,

π

a
√|εzz| , εzz � −1.

(21)

Thus, Eq. (20) provides a compact analytical result for the
Purcell factor in the lossless hyperbolic medium. Its general
structure can be understood as follows: the factor (kz,max/q)3 ∼
1/(qa)3 describes the enhancement of the photonic density
of states as compared to the vacuum. The second factor
|V0Gzz,stat(z)|2 reflects the coordinate dependence of the
Purcell factor, governed by the near field of the neigh-
boring dipoles.58 Near the lattice nodes Eq. (20) can be
simplified to

fhyp(q,z → 0) ≈ π (ε − 1)2a3

8q3|z|6 , (22)

where we assumed that |ε| � 1.
A similar calculation can also be performed in the elliptic

case when εzz > 0. It should be noted that in the effective-
medium approximation, the Purcell factor for the axial dipole
in the elliptic medium is unity, independently of the value of
εzz.32 Local field corrections can still promote a high decay
rate. The answer reads

fell = |Gstat,zz|2
∣∣∣∣V0(ε − 1)

4π

∣∣∣∣
2

. (23)

This expression depends on the local field intensity, similarly
to Eq. (20), but is smaller by the factor

fhyp

fell
= k3

z,max

2q3
, (24)

since the density of states in the elliptic medium is smaller.
In order to distinguish between the local field effects and the
collective effects due to density of states enhancement in the
medium it is instructive to analyze also the Purcell factor for
a source located in vacuum near a single dipole at the point
r = 0. The result reads2,48

f1 = 1 + 3

2q3
Im

[
αzzG

2
0,zz(r0)

]
; (25)

here, the second term is the field of the emitter reflected
from the dipole. In the quasistatic limit q → 0, Eq. (25)
reduces to

f1 =
(

1 + α0,zz

|z3|
)2

. (26)

Both Eqs. (22) and (26) demonstrate divergency when z tends
to zero. However, their dependence on the wave vector q is
quite different: Eq. (22) diverges as 1/q3 at small q, while
Eq. (26) does not depend on q at all. This divergency is a
characteristic effect increasing photonic density of states in a
hyperbolic medium.20,26,32

B. Numerical results

Now we discuss the calculated dependence of the Purcell
factor on the source position and on the transition frequency
ω = cq, shown in Figs. 8, 9, and 10. The calculations confirm
the singular behavior of the Purcell factor in the hyperbolic
case when the source approaches the lattice nodes [the solid
curve in Fig. 8(a)]. The singularity is excellently described by
the analytical Eq. (20) (the thin red curve). The interaction of
the emitter with a single dipole [Eq. (25)] provides substan-
tially smaller enhancements (the dashed black curve), although
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FIG. 11. (Color online) Purcell factor (solid lines) and Lamb shift
(dashed lines) dependence on the coordinate z0 of the source in the
unit cell for different values of qa. The calculation parameters are the
same as in Fig. 4.

it also diverges at z = 0 and z = a. Additional comparison of
the exact calculation in the medium with the result for a single
dipole is presented by the Purcell factor dependence on the
two coordinates x and z in the unit cell, shown in Fig. 9.
Equation (25), taking into account only a single lattice dipole
at the point r = 0, satisfactorily reproduces the Purcell factor
pattern near this point. The corresponding two-dimensional
plot of the Purcell factor in the quadrant 0 � x,y � 1 is shown
on Fig. 9(b). Comparing the two panels of Fig. 9 we see that
near the corner r = 0 the angular dependence is approximately
given by (3 cos2 θ − 1)2, where θ is the polar angle. Still,
the single-dipole model with corresponding polarizability
α0,zz = −6a3/(4π ) considerably underestimates the absolute
values of the Purcell factor. The situation is different in the
elliptic case, where all three approaches, namely, numerical
calculation according to Eq. (16), the single-dipole model (25)
with α0,zz = a3/(4π ), and the analytical model (23) provide
similar results [Fig. 8(b)].

The failure of the single-dipole model in the hyperbolic
medium is also revealed in the frequency dependence of the
Purcell factor [Fig. 10(a)]. The dashed curve, calculated for a
single dipole, tends to the limit Eq. (26), which is frequency
independent. However, the Purcell factor in the hyperbolic
medium diverges at low frequencies as 1/q3, according to
Eq. (22). The Lamb shift l, calculated in the hyperbolic
medium for different values of qa is presented in Fig. 11
by the dashed curves. The Lamb shift is of the same order
as the Purcell factor (dashed curve) and has similar near-field
singularities at the node sites.

To summarize, Figs. 8–11 underline the importance of the
local field effects in the hyperbolic medium and confirm the
collective origin of the spontaneous emission enhancement.

V. CONCLUSIONS

We have developed the analytical theory of light-matter
coupling in discrete hyperbolic metamaterials in the frame-
work of the discrete model of a cubic lattice of uniaxial
resonant dipoles. We have calculated the Purcell factor,
Lamb shift, and Green function for such a discrete model,
and demonstrated that the optimal emitter position is in
the local field maxima, close to the lattice nodes. We have
demonstrated that the density of states is drastically enhanced
in the hyperbolic regime as compared to other cases including
vacuum, the elliptic regime, or the single-resonant-dipole case.
As a result, a huge number of lattice dipoles are efficiently
excited by the emitter, which has been visualized by calculating
the Green function of the lattice. The Green function has the
shape of a cone: the field propagates along the directions close
to the symmetry axis z and decays in the xy plane. The discrete
character of the problem results in strong spatial modulation
of the Green function.

Experimental state-of-the art metamaterials are character-
ized by substantially lower absolute values of the Purcell
factor than those calculated here. This is mainly due to the
point-dipole approximation we have utilized: as the distance to
the scatterers becomes comparable to their sizes, higher-order
multipoles must be accounted for. This will inevitably reduce
the local field and suppress the Purcell factor. Finally, losses
are always present and can significantly influence the discussed
numerical answers. All such effects will be of high importance
in the optical frequency range. Indeed, e.g., for dielectric
quantum microcavities the value of 10 for the Purcell factor
is already considered as large.59 For lower frequencies one
can expect a much stronger effect: a huge enhancement factor
>1018 was claimed already in the original Purcell paper.1 Thus,
we believe that our results will remain qualitatively correct
for more complex settings, and they provide an important
insight into the rapidly developing physics of hyperbolic
metamaterials.
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