115 research outputs found

    Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters

    Get PDF
    Abstract Stable isotopes are widely used as time-integrating tracers of trophic interactions, but turnover rates of isotopes in animal tissues remain poorly understood. Here, we report nitrogen (N) isotope turnover rates in tissues of four primary consumer species: Ancistrus triradiatus armored catfish (muscle, fins, and whole blood), Tarebia granifera snails (muscle), and Rana palmipes tadpoles (muscle) from a Venezuelan river, and Lavigeria grandis snails (muscle) from Lake Tanganyika, East Africa. Turnover was estimated from the dilution of a 15 N label introduced into consumer tissues by feeding on 15 N-enriched periphyton. Muscle turnover rates were rapid (0.5-3.8% per day), and were attributable to metabolic replacement of N as well as growth in catfish and snails. N turnover in catfish muscle decreased with size, and fin tissue turned over more rapidly than whole blood or muscle, though the difference was not significant. Our results indicate that stable isotope signatures of these tropical species could change markedly within weeks following a shift in diet. However, generalization across taxa or latitudes is complicated by the strong sizedependence of isotope turnover rates. The enrichmentdilution approach outlined here may facilitate measurement of isotopic turnover in a wide variety of consumers under field conditions

    Fish Distributions and Nutrient Cycling in Streams: Can Fish Create Biogeochemical Hotspots?

    Get PDF
    Rates of biogeochemical processes often vary widely in space and time, and characterizing this variation is critical for understanding ecosystem functioning. In streams, spatial hotspots of nutrient transformations are generally attributed to physical and microbial processes. Here we examine the potential for heterogeneous distributions of fish to generate hotspots of nutrient recycling. We measured nitrogen (N) and phosphorus (P) excretion rates of 47 species of fish in an N-limited Neotropical stream, and we combined these data with population densities in each of 49 stream channel units to estimate unit- and reach-scale nutrient recycling. Species varied widely in rates of N and P excretion as well as excreted N:P ratios (6–176 molar). At the reach scale, fish excretion could meet \u3e75% of ecosystem demand for dissolved inorganic N and turn over the ambient NH4 pool i

    Reducing adverse impacts of Amazon hydropower expansion

    Get PDF
    Proposed hydropower dams at more than 350 sites throughout the Amazon require strategic evaluation of trade-offs between the numerous ecosystem services provided by Earth\u27s largest and most biodiverse river basin. These services are spatially variable, hence collective impacts of newly built dams depend strongly on their configuration. We use multiobjective optimization to identify portfolios of sites that simultaneously minimize impacts on river flow, river connectivity, sediment transport, fish diversity, and greenhouse gas emissions while achieving energy production goals. We find that uncoordinated, dam-by-dam hydropower expansion has resulted in forgone ecosystem service benefits. Minimizing further damage from hydropower development requires considering diverse environmental impacts across the entire basin, as well as cooperation among Amazonian nations. Our findings offer a transferable model for the evaluation of hydropower expansion in transboundary basins

    Environmental and Organismal Predictors of Intraspecific Variation in the Stoichiometry of a Neotropical Freshwater Fish

    Get PDF
    The elemental composition of animals, or their organismal stoichiometry, is thought to constrain their contribution to nutrient recycling, their interactions with other animals, and their demographic rates. Factors that affect organismal stoichiometry are generally poorly understood, but likely reflect elemental investments in morphological features and life history traits, acting in concert with the environmental availability of elements. We assessed the relative contribution of organismal traits and environmental variability to the stoichiometry of an insectivorous Neotropical stream fish, Rivulus hartii. We characterized the influence of body size, life history phenotype, stage of maturity, and environmental variability on organismal stoichiometry in 6 streams that differ in a broad suite of environmental variables. The elemental composition of R. hartii was variable, and overlapped with the wide range of elemental composition documented across freshwater fish taxa. Average %P composition was ∌3.2%(±0.6), average %N∌10.7%(±0.9), and average %C∌41.7%(±3.1). Streams were the strongest predictor of organismal stoichiometry, and explained up to 18% of the overall variance. This effect appeared to be largely explained by variability in quality of basal resources such as epilithon N∶P and benthic organic matter C∶N, along with variability in invertebrate standing stocks, an important food source for R. hartii. Organismal traits were weak predictors of organismal stoichiometry in this species, explaining when combined up to 7% of the overall variance in stoichiometry. Body size was significantly and positively correlated with %P, and negatively with N∶P, and C∶P, and life history phenotype was significantly correlated with %C, %P, C∶P and C∶N. Our study suggests that spatial variability in elemental availability is more strongly correlated with organismal stoichiometry than organismal traits, and suggests that the stoichiometry of carnivores may not be completely buffered from environmental variability. We discuss the relevance of these findings to ecological stoichiometry theory

    Fish introductions and light modulate food web fluxes in tropical streams: a whole-ecosystem experimental approach

    Get PDF
    Decades of ecological study have demonstrated the importance of top-down and bottom-up controls on food webs, yet few studies within this context have quantified the magnitude of energy and material fluxes at the whole-ecosystem scale. We examined top-down and bottom-up effects on food web fluxes using a field experiment that manipulated the presence of a consumer, the Trinidadian guppy Poecilia reticulata, and the production of basal resources by thinning the riparian forest canopy to increase incident light. To gauge the effects of these reach-scale manipulations on food web fluxes, we used a nitrogen (N-15) stable isotope tracer to compare basal resource treatments (thinned canopy vs. control) and consumer treatments (guppy introduction vs. control). The thinned canopy stream had higher primary production than the natural canopy control, leading to increased N fluxes to invertebrates that feed on benthic biofilms (grazers), fine benthic organic matter (collector-gatherers), and organic particles suspended in the water column (filter feeders). Stream reaches with guppies also had higher primary productivity and higher N fluxes to grazers and filter feeders. In contrast, N fluxes to collector-gatherers were reduced in guppy introduction reaches relative to upstream controls. N fluxes to leaf-shredding invertebrates, predatory invertebrates, and the other fish species present (Hart\u27s killifish, Anablepsoides hartii) did not differ across light or guppy treatments, suggesting that effects on detritus-based linkages and upper trophic levels were not as strong. Effect sizes of guppy and canopy treatments on N flux rates were similar for most taxa, though guppy effects were the strongest for filter feeding invertebrates while canopy effects were the strongest for collector-gatherer invertebrates. Combined, these results extend previous knowledge about top-down and bottom-up controls on ecosystems by providing experimental, reach-scale evidence that both pathways can act simultaneously and have equally strong influence on nutrient fluxes from inorganic pools through primary consumers

    Global Patterns and Drivers of Ecosystem Functioning in Rivers and Riparian Zones

    Get PDF
    River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale

    Impacts of an Invasive Snail (Tarebia granifera) on Nutrient Cycling in Tropical Streams: The Role of Riparian Deforestation in Trinidad, West Indies

    Get PDF
    Non-native species and habitat degradation are two major catalysts of environmental change and often occur simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an invasive herbivorous snail, Tarebia granifera, on nitrogen (N) cycling in aquatic systems on the island of Trinidad. We quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass- and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9 times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the biogeochemical cycling of N
    • 

    corecore