882 research outputs found

    Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer

    No full text
    We demonstrate and study a novel process for fabrication of GaAs-based self-aligned lasers based upon a single over-growth. A lattice-matched n-doped InGaP layer is utilized for both electrical and optical confinements. Single-lateral-mode emission is demonstrated initially from an In0.17Ga0.83 As double quantum well laser emitting similar to 980 nm. We then apply the fabrication technique to a quantum dot laser emitting similar to 1300 nm. Furthermore, we analyze the breakdown mechanism in our devices and discuss the limitations of index guiding in our structures

    Perturbation theory for non-spherical fluids based on discretization of the interactions

    Get PDF
    7 páginas, 5 figuras; PACS: 65.20.De, 61.20.JaAn extension of the discrete perturbation theory [A. L. Benavides and A. Gil-Villegas, Mol. Phys. 97(12), 1225 (1999)10.1080/00268979909482924] accounting for non-spherical interactions is presented. An analytical expression for the Helmholtz free energy for an equivalent discrete potential is given as a function of density, temperature, and intermolecular parameters with implicit shape dependence. The presented procedure is suitable for the description of the thermodynamics of general intermolecular potential models of arbitrary shape. The overlap and dispersion forces are represented by a discrete potential formed by a sequence of square-well and square-shoulders potentials of shape-dependent widths. By varying the intermolecular parameters through their geometrical dependence, some illustrative cases of square-well spherocylinders and Kihara fluids are considered, and their vapor-liquid phase diagrams are tested against available simulation data. It is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the Monte Carlo data for the selected potentials, except near the critical region.A.L.B. acknowledges funding received by Grant No. 152684 CONACYT (México). F.G. acknowledges funding through Project No. P07-FQM-02600 (Junta de Andalucía-FEDER) for his postdoctoral fellowship.Peer reviewe

    Robust Entanglement in Atomic Systems via Lambda-Type Processes

    Get PDF
    It is shown that the system of two three-level atoms in Λ\Lambda configuration in a cavity can evolve to a long-lived maximum entangled state if the Stokes photons vanish from the cavity by means of either leakage or damping. The difference in evolution picture corresponding to the general model and effective model with two-photon process in two-level system is discussed.Comment: 10 pages, 3 figure

    BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields

    Full text link
    We construct a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with the corresponding Young tableaux having two rows, on a basis of the BRST approach. Starting with a description of fermionic higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a first-class constraint system. For this purpose, we find auxiliary representations of the constraint subsuperalgebra containing the subsystem of second-class constraints in terms of Verma modules. We propose a universal procedure of constructing gauge-invariant Lagrangians with reducible gauge symmetries describing the dynamics of both massless and massive fermionic fields of any spin. No off-shell constraints for the fields and gauge parameters are used from the very beginning. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by the constraints corresponding to an irreducible Poincare-group representation. To illustrate the general construction, we obtain a Lagrangian description of fermionic fields with generalized spin (3/2,1/2) and (3/2,3/2) on a flat background containing the complete set of auxiliary fields and gauge symmetries.Comment: 41 pages, no figures, corrected typos, updated introduction, sections 5, 7.1, 7.2 with examples, conclusion with all basic results unchanged, corrected formulae (3.27), (7.138), (7.140), added dimensional reduction part with formulae (5.34)-(5.48), (7.8)-(7.10), (7.131)-(7.136), (7.143)-(7.164), added Refs. 52, 53, 54, examples for massive fields developed by 2 way

    Non-Commutative Inflation

    Get PDF
    We show how a radiation dominated universe subject to space-time quantization may give rise to inflation as the radiation temperature exceeds the Planck temperature. We consider dispersion relations with a maximal momentum (i.e. a mimimum Compton wavelength, or quantum of space), noting that some of these lead to a trans-Planckian branch where energy increases with decreasing momenta. This feature translates into negative radiation pressure and, in well-defined circumstances, into an inflationary equation of state. We thus realize the inflationary scenario without the aid of an inflaton field. As the radiation cools down below the Planck temperature, inflation gracefully exits into a standard Big Bang universe, dispensing with a period of reheating. Thermal fluctuations in the radiation bath will in this case generate curvature fluctuations on cosmological scales whose amplitude and spectrum can be tuned to agree with observations.Comment: 4 pages, 3 figure

    Black Holes from Nucleating Strings

    Full text link
    We evaluate the probability that a loop of string that has spontaneously nucleated during inflation will form a black hole upon collapse, after the end of inflation. We then use the observational bounds on the density of primordial black holes to put constraints on the parameters of the model. Other constraints from the distortions of the microwave background and emission of gravitational radiation by the loops are considered. Also, observational constraints on domain wall nucleation and monopole pair production during inflation are briefly discussed.Comment: 27 pages, tutp-92-

    Effects of the field modulation on the Hofstadter's spectrum

    Full text link
    We study the effect of spatially modulated magnetic fields on the energy spectrum of a two-dimensional (2D) Bloch electron. Taking into account four kinds of modulated fields and using the method of direct diagonalization of the Hamiltonian matrix, we calculate energy spectra with varying system parameters (i.e., the kind of the modulation, the relative strength of the modulated field to the uniform background field, and the period of the modulation) to elucidate that the energy band structure sensitively depends on such parameters: Inclusion of spatially modulated fields into a uniform field leads occurrence of gap opening, gap closing, band crossing, and band broadening, resulting distinctive energy band structure from the Hofstadter's spectrum. We also discuss the effect of the field modulation on the symmetries appeared in the Hofstadter's spectrum in detail.Comment: 7 pages (in two-column), 10 figures (including 2 tables

    Electromagnetic waves in an axion-active relativistic plasma non-minimally coupled to gravity

    Full text link
    We consider cosmological applications of a new self-consistent system of equations, accounting for a nonminimal coupling of the gravitational, electromagnetic and pseudoscalar (axion) fields in a relativistic plasma. We focus on dispersion relations for electromagnetic perturbations in an initially isotropic ultrarelativistic plasma coupled to the gravitational and axion fields in the framework of isotropic homogeneous cosmological model of the de Sitter type. We classify the longitudinal and transversal electromagnetic modes in an axionically active plasma and distinguish between waves (damping, instable or running), and nonharmonic perturbations (damping or instable). We show that for the special choice of the guiding model parameters the transversal electromagnetic waves in the axionically active plasma, nonminimally coupled to gravity, can propagate with the phase velocity less than speed of light in vacuum, thus displaying a possibility for a new type of resonant particle-wave interactions.Comment: 19 pages, 9 figures, published versio

    Instantons and Yang-Mills Flows on Coset Spaces

    Full text link
    We consider the Yang-Mills flow equations on a reductive coset space G/H and the Yang-Mills equations on the manifold R x G/H. On nonsymmetric coset spaces G/H one can introduce geometric fluxes identified with the torsion of the spin connection. The condition of G-equivariance imposed on the gauge fields reduces the Yang-Mills equations to phi^4-kink equations on R. Depending on the boundary conditions and torsion, we obtain solutions to the Yang-Mills equations describing instantons, chains of instanton-anti-instanton pairs or modifications of gauge bundles. For Lorentzian signature on R x G/H, dyon-type configurations are constructed as well. We also present explicit solutions to the Yang-Mills flow equations and compare them with the Yang-Mills solutions on R x G/H.Comment: 1+12 page

    An Inflationary Model in String Theory

    Get PDF
    We construct a model of inflation in string theory after carefully taking into account moduli stabilization. The setting is a warped compactification of Type IIB string theory in the presence of D3 and anti-D3-branes. The inflaton is the position of a D3-brane in the internal space. By suitably adjusting fluxes and the location of symmetrically placed anti-D3-branes, we show that at a point of enhanced symmetry, the inflaton potential V can have a broad maximum, satisfying the condition V''/V << 1 in Planck units. On starting close to the top of this potential the slow-roll conditions can be met. Observational constraints impose significant restrictions. As a first pass we show that these can be satisfied and determine the important scales in the compactification to within an order of magnitude. One robust feature is that the scale of inflation is low, H = O(10^{10}) GeV. Removing the observational constraints makes it much easier to construct a slow-roll inflationary model. Generalizations and consequences including the possibility of eternal inflation are also discussed. A more careful study, including explicit constructions of the model in string theory, is left for the future.Comment: 27 pages, LaTeX, 1 eps figure. v2: references adde
    corecore