882 research outputs found
Quantum well and dot self-aligned stripe lasers utilizing an InGaP optoelectronic confinement layer
We demonstrate and study a novel process for fabrication of GaAs-based self-aligned lasers based upon a single over-growth. A lattice-matched n-doped InGaP layer is utilized for both electrical and optical confinements. Single-lateral-mode emission is demonstrated initially from an In0.17Ga0.83 As double quantum well laser emitting similar to 980 nm. We then apply the fabrication technique to a quantum dot laser emitting similar to 1300 nm. Furthermore, we analyze the breakdown mechanism in our devices and discuss the limitations of index guiding in our structures
Perturbation theory for non-spherical fluids based on discretization of the interactions
7 páginas, 5 figuras; PACS: 65.20.De, 61.20.JaAn extension of the discrete perturbation theory [A. L. Benavides and A. Gil-Villegas, Mol. Phys. 97(12), 1225 (1999)10.1080/00268979909482924] accounting for non-spherical interactions is presented. An analytical expression for the Helmholtz free energy for an equivalent discrete potential is given as a function of density, temperature, and intermolecular parameters with implicit shape dependence. The presented procedure is suitable for the description of the thermodynamics of general intermolecular potential models of arbitrary shape. The overlap and dispersion forces are represented by a discrete potential formed by a sequence of square-well and square-shoulders potentials of shape-dependent widths. By varying the intermolecular parameters through their geometrical dependence, some illustrative cases of square-well spherocylinders and Kihara fluids are considered, and their vapor-liquid phase diagrams are tested against available simulation data. It is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the Monte Carlo data for the selected potentials, except near the critical region.A.L.B. acknowledges funding received by Grant No. 152684 CONACYT (México). F.G. acknowledges funding through Project No. P07-FQM-02600 (Junta de Andalucía-FEDER) for his postdoctoral fellowship.Peer reviewe
Robust Entanglement in Atomic Systems via Lambda-Type Processes
It is shown that the system of two three-level atoms in
configuration in a cavity can evolve to a long-lived maximum entangled state if
the Stokes photons vanish from the cavity by means of either leakage or
damping. The difference in evolution picture corresponding to the general model
and effective model with two-photon process in two-level system is discussed.Comment: 10 pages, 3 figure
BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields
We construct a Lagrangian description of irreducible half-integer higher-spin
representations of the Poincare group with the corresponding Young tableaux
having two rows, on a basis of the BRST approach. Starting with a description
of fermionic higher-spin fields in a flat space of any dimension in terms of an
auxiliary Fock space, we realize a conversion of the initial operator
constraint system (constructed with respect to the relations extracting
irreducible Poincare-group representations) into a first-class constraint
system. For this purpose, we find auxiliary representations of the constraint
subsuperalgebra containing the subsystem of second-class constraints in terms
of Verma modules. We propose a universal procedure of constructing
gauge-invariant Lagrangians with reducible gauge symmetries describing the
dynamics of both massless and massive fermionic fields of any spin. No
off-shell constraints for the fields and gauge parameters are used from the
very beginning. It is shown that the space of BRST cohomologies with a
vanishing ghost number is determined only by the constraints corresponding to
an irreducible Poincare-group representation. To illustrate the general
construction, we obtain a Lagrangian description of fermionic fields with
generalized spin (3/2,1/2) and (3/2,3/2) on a flat background containing the
complete set of auxiliary fields and gauge symmetries.Comment: 41 pages, no figures, corrected typos, updated introduction, sections
5, 7.1, 7.2 with examples, conclusion with all basic results unchanged,
corrected formulae (3.27), (7.138), (7.140), added dimensional reduction part
with formulae (5.34)-(5.48), (7.8)-(7.10), (7.131)-(7.136), (7.143)-(7.164),
added Refs. 52, 53, 54, examples for massive fields developed by 2 way
Non-Commutative Inflation
We show how a radiation dominated universe subject to space-time quantization
may give rise to inflation as the radiation temperature exceeds the Planck
temperature. We consider dispersion relations with a maximal momentum (i.e. a
mimimum Compton wavelength, or quantum of space), noting that some of these
lead to a trans-Planckian branch where energy increases with decreasing
momenta. This feature translates into negative radiation pressure and, in
well-defined circumstances, into an inflationary equation of state. We thus
realize the inflationary scenario without the aid of an inflaton field. As the
radiation cools down below the Planck temperature, inflation gracefully exits
into a standard Big Bang universe, dispensing with a period of reheating.
Thermal fluctuations in the radiation bath will in this case generate curvature
fluctuations on cosmological scales whose amplitude and spectrum can be tuned
to agree with observations.Comment: 4 pages, 3 figure
Black Holes from Nucleating Strings
We evaluate the probability that a loop of string that has spontaneously
nucleated during inflation will form a black hole upon collapse, after the end
of inflation. We then use the observational bounds on the density of primordial
black holes to put constraints on the parameters of the model. Other
constraints from the distortions of the microwave background and emission of
gravitational radiation by the loops are considered. Also, observational
constraints on domain wall nucleation and monopole pair production during
inflation are briefly discussed.Comment: 27 pages, tutp-92-
Effects of the field modulation on the Hofstadter's spectrum
We study the effect of spatially modulated magnetic fields on the energy
spectrum of a two-dimensional (2D) Bloch electron. Taking into account four
kinds of modulated fields and using the method of direct diagonalization of the
Hamiltonian matrix, we calculate energy spectra with varying system parameters
(i.e., the kind of the modulation, the relative strength of the modulated field
to the uniform background field, and the period of the modulation) to elucidate
that the energy band structure sensitively depends on such parameters:
Inclusion of spatially modulated fields into a uniform field leads occurrence
of gap opening, gap closing, band crossing, and band broadening, resulting
distinctive energy band structure from the Hofstadter's spectrum. We also
discuss the effect of the field modulation on the symmetries appeared in the
Hofstadter's spectrum in detail.Comment: 7 pages (in two-column), 10 figures (including 2 tables
Electromagnetic waves in an axion-active relativistic plasma non-minimally coupled to gravity
We consider cosmological applications of a new self-consistent system of
equations, accounting for a nonminimal coupling of the gravitational,
electromagnetic and pseudoscalar (axion) fields in a relativistic plasma. We
focus on dispersion relations for electromagnetic perturbations in an initially
isotropic ultrarelativistic plasma coupled to the gravitational and axion
fields in the framework of isotropic homogeneous cosmological model of the de
Sitter type. We classify the longitudinal and transversal electromagnetic modes
in an axionically active plasma and distinguish between waves (damping,
instable or running), and nonharmonic perturbations (damping or instable). We
show that for the special choice of the guiding model parameters the
transversal electromagnetic waves in the axionically active plasma,
nonminimally coupled to gravity, can propagate with the phase velocity less
than speed of light in vacuum, thus displaying a possibility for a new type of
resonant particle-wave interactions.Comment: 19 pages, 9 figures, published versio
Instantons and Yang-Mills Flows on Coset Spaces
We consider the Yang-Mills flow equations on a reductive coset space G/H and
the Yang-Mills equations on the manifold R x G/H. On nonsymmetric coset spaces
G/H one can introduce geometric fluxes identified with the torsion of the spin
connection. The condition of G-equivariance imposed on the gauge fields reduces
the Yang-Mills equations to phi^4-kink equations on R. Depending on the
boundary conditions and torsion, we obtain solutions to the Yang-Mills
equations describing instantons, chains of instanton-anti-instanton pairs or
modifications of gauge bundles. For Lorentzian signature on R x G/H, dyon-type
configurations are constructed as well. We also present explicit solutions to
the Yang-Mills flow equations and compare them with the Yang-Mills solutions on
R x G/H.Comment: 1+12 page
An Inflationary Model in String Theory
We construct a model of inflation in string theory after carefully taking
into account moduli stabilization. The setting is a warped compactification of
Type IIB string theory in the presence of D3 and anti-D3-branes. The inflaton
is the position of a D3-brane in the internal space. By suitably adjusting
fluxes and the location of symmetrically placed anti-D3-branes, we show that at
a point of enhanced symmetry, the inflaton potential V can have a broad
maximum, satisfying the condition V''/V << 1 in Planck units. On starting close
to the top of this potential the slow-roll conditions can be met. Observational
constraints impose significant restrictions. As a first pass we show that these
can be satisfied and determine the important scales in the compactification to
within an order of magnitude. One robust feature is that the scale of inflation
is low, H = O(10^{10}) GeV. Removing the observational constraints makes it
much easier to construct a slow-roll inflationary model. Generalizations and
consequences including the possibility of eternal inflation are also discussed.
A more careful study, including explicit constructions of the model in string
theory, is left for the future.Comment: 27 pages, LaTeX, 1 eps figure. v2: references adde
- …
