141 research outputs found

    Parametric phenomena of the particle dynamics in a periodic gravitational wave field

    Get PDF
    We establish exactly solvable models for the motion of neutral particles, electrically charged point and spin particles (U(1) symmetry), isospin particles (SU(2) symmetry), and particles with color charges (SU(3) symmetry) in a gravitational wave background. Special attention is devoted to parametric effects induced by the gravitational field. In particular, we discuss parametric instabilities of the particle motion and parametric oscillations of the vectors of spin, isospin, and color charge.Comment: 26 pages, to be published in J. Math. Phy

    Time-Lapse Microscopy

    Get PDF
    Time-lapse microscopy is a powerful, versatile and constantly developing tool for real-time imaging of living cells. This review outlines the advances of time-lapse microscopy and refers to the most interesting reports, thus pointing at the fact that the modern biology and medicine are entering the thrilling and promising age of molecular cinematography

    A bound on the scale of spacetime noncommutativity from the reheating phase after inflation

    Get PDF
    In an approach to noncommutative gauge theories, where the full noncommutative behavior is delimited by the presence of the UV and IR cutoffs, we consider the possibility of describing a system at a temperature T in a box of size L. Employing a specific form of UV/IR relationship inherent in such an approach of restrictive noncommutativity, we derive, for a given temperature T, an upper bound on the parameter of spacetime noncommutativity Lambda_NC ~ |theta|^{-1/2}. Considering such epochs in the very early universe which are expected to reflect spacetime noncommutativity to a quite degree, like the reheating stage after inflation, or believable pre-inflation radiation-dominated epochs, the best limits on Lambda_NC are obtained. We also demonstrate how the nature and size of the thermal system (for instance, the Hubble distance versus the future event horizon) can affect our bounds.Comment: 9 pages, a reference added, to appear in PL

    Baryon number non-conservation and phase transitions at preheating

    Get PDF
    Certain inflation models undergo pre-heating, in which inflaton oscillations can drive parametric resonance instabilities. We discuss several phenomena stemming from such instabilities, especially in weak-scale models; generically, these involve energizing a resonant system so that it can evade tunneling by crossing barriers classically. One possibility is a spontaneous change of phase from a lower-energy vacuum state to one of higher energy, as exemplified by an asymmetric double-well potential with different masses in each well. If the lower well is in resonance with oscillations of the potential, a system can be driven resonantly to the upper well and stay there (except for tunneling) if the upper well is not resonant. Another example occurs in hybrid inflation models where the Higgs field is resonant; the Higgs oscillations can be transferred to electroweak (EW) gauge potentials, leading to rapid transitions over sphaleron barriers and consequent B+L violation. Given an appropriate CP-violating seed, we find that preheating can drive a time-varying condensate of Chern-Simons number over large spatial scales; this condensate evolves by oscillation as well as decay into modes with shorter spatial gradients, eventually ending up as a condensate of sphalerons. We study these examples numerically and to some extent analytically. The emphasis in the present paper is on the generic mechanisms, and not on specific preheating models; these will be discussed in a later paper.Comment: 10 pages, 7 figures included, revtex, epsf, references adde

    Analysis of measurement errors for a superconducting phase qubit

    Full text link
    We analyze several mechanisms leading to errors in a course of measurement of a superconducting flux-biased phase qubit. Insufficiently long measurement pulse may lead to nonadiabatic transitions between qubit states ∣1>|1> and ∣0>|0>, before tunneling through a reduced barrier is supposed to distinguish the qubit states. Finite (though large) ratio of tunneling rates for these states leads to incomplete discrimination between ∣1>|1> and ∣0>|0>. Insufficiently fast energy relaxation after the tunneling of state ∣1>|1> may cause the repopulation of the quantum well in which only the state ∣0>|0> is supposed to remain. We analyze these types of measurement errors using analytical approaches as well as numerical solution of the time-dependent Schr\"{o}dinger equation.Comment: 14 pages, 14 figure

    Evolution of Topological Defects During Inflation

    Full text link
    Topological defects can be formed during inflation by phase transitions as well as by quantum nucleation. We study the effect of the expansion of the Universe on the internal structure of the defects. We look for stationary solutions to the field equations, i.e. solutions that depend only on the proper distance from the defect core. In the case of very thin defects, whose core dimensions are much smaller than the de Sitter horizon, we find that the solutions are well approximated by the flat space solutions. However, as the flat space thickness parameter ή0\delta_0 increases we notice a deviation from this, an effect that becomes dramatic as ή0\delta_0 approaches (H)−1/2(H)^{-1}/{\sqrt 2}. Beyond this critical value we find no stationary solutions to the field equations. We conclude that only defects that have flat space thicknesses less than the critical value survive, while thicker defects are smeared out by the expansion.Comment: 14 page

    Extending Event-Driven Architecture for Proactive Systems

    Get PDF
    ABSTRACT Proactive Event-Driven Computing is a new paradigm, in which a decision is not made due to explicit users' requests nor is it made as a response to past events. Rather, the decision is autonomously triggered by forecasting future states. Proactive event-driven computing requires a departure from current event-driven architectures to ones capable of handling uncertainty and future events, and real-time decision making. We present a proactive event-driven architecture for Scalable Proactive Event-Driven Decision-making (SPEEDD), which combines these capabilities. The proposed architecture is composed of three main components: complex event processing, real-time decision making, and visualization. This architecture is instantiated by a real use case from the traffic management domain. In the future, the results of actual implementations of the use case will help us revise and refine the proposed architecture

    Effective Field Theory Approach to String Gas Cosmology

    Get PDF
    We derive the 4D low energy effective field theory for a closed string gas on a time dependent FRW background. We examine the solutions and find that although the Brandenberger-Vafa mechanism at late times no longer leads to radion stabilization, the radion rolls slowly enough that the scenario is still of interest. In particular, we find a simple example of the string inspired dark matter recently proposed by Gubser and Peebles.Comment: 19 pages, 2 figures, comments adde

    On higher derivative corrections of tachyon action

    Full text link
    We have examined the momentum expansion of the disk level S-matrix element of two tachyons and two gauge fields to find, up to on-shell ambiguity, the couplings of these fields in the world volume theory of N coincident non-BPS D-branes to all order of αâ€Č\alpha'. Using the proposal that the action of D-brane-anti-D-brane is given by the projection of the action of two non-BPS D-branes with (−1)FL(-1)^{F_L}, we find the corresponding couplings in the world volume theory of the brane-anti-brane system. Using these infinite tower of couplings, we then calculate the massless pole of the scattering amplitude of one RR field, two tachyons and one gauge field in the brane-anti-brane theory. We find that the massless pole of the field theory amplitude is exactly equal to the massless pole of the disk level S-matrix element of one RR, two tachyons and one gauge field to all order of αâ€Č\alpha'.Comment: 22 pages, 1 figure, latex file, V2: minor change in notatio
    • 

    corecore