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b Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 January 2012
Accepted 22 February 2012
Available online 24 February 2012
Editor: M. Cvetič

In an approach to noncommutative gauge theories, where the full noncommutative behavior is delimited
by the presence of the UV and IR cutoffs, we consider the possibility of describing a system at a
temperature T in a box of size L. Employing a specific form of UV/IR relationship inherent in such an
approach of restrictive noncommutativity, we derive, for a given temperature T , an upper bound on
the parameter of spacetime noncommutativity ΛNC ∼ |θ |−1/2. Considering such epochs in the very early
universe which are expected to reflect spacetime noncommutativity to a quite degree, like the reheating
stage after inflation, or believable pre-inflation radiation-dominated epochs, the best limits on ΛNC are
obtained. We also demonstrate how the nature and size of the thermal system (for instance, the Hubble
distance versus the future event horizon) can affect our bounds.

© 2012 Elsevier B.V. Open access under CC BY license.
At the perturbative level noncommutative (NC) quantum field
theories (QFT) suffer from the infamous UV/IR mixing problem [1]
and therefore lack universality [1–3]. This means that any mod-
ification at very high momentum scales does inevitably modify
the physics at very small momentum scales in a profound way,
rather than involving a soft modification being switched off in the
far IR. A treatment of this problem thus necessitate understand-
ing on the UV completion of the theory. The formal reason for
such a behavior is a tacit assumption that in four dimensions NC
gauge field theories are valid up to arbitrarily large momentum
scales.

In two important papers [4,5], it was shown that NC gauge
theories can be realized as an effective QFT, underlain by some
more fundamental theory such as string theory. In particular, it
was shown [4] that at energy scales below the IR cutoff ΛIR, the
NC theory becomes (up to residual effects) an ordinary commuta-
tive QFT, thereby diminishing substantially the power of the UV/IR
mixing. On the other hand, it was also claimed [4] that the phe-
nomenological effects of the UV completion (for a large class of
more general QFTs above the UV cutoff ΛUV) can be quite success-
fully modeled by a threshold value ΛUV. To a good approximation
the theory thus becomes an effective QFT with the UV and IR cut-
offs obeying the relationship
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ΛUVΛIR ∼ Λ2
NC, (1)

where the scale of noncommutativity is heuristically introduced
as Λ−2

NC ∼ |θ |. The full scope of noncommutativity is experienced
only in the range delimited by ΛIR and ΛUV, ΛIR < ΛNC < ΛUV,
while the commutative world (up to residual effects of noncom-
mutativity) resides below ΛIR. Such a scenario had already been
confronted with experimental data [4,6], and in so doing useful
information on the scale of noncommutativity ΛNC was drawn.
Note that with ΛNC high enough, the whole standard model can
be placed below ΛIR. In this way, one successfully gets rid of the
Lorentz symmetry violating mass term for photons [4], a relic of
the theory in which the scope of noncommutativity extends up to
ΛUV → ∞ and down to ΛIR → 0.

Let us first examine how the above scenario affects the UV/IR
mixing problem. The phenomenon of UV/IR mixing is best un-
derstood by examining the behavior of the (nonplanar) loop
graphs with the ordinary product of fields replaced by the Moyal
�-product (see, e.g., [7,8]). This results in phase factors [9,10] de-
pending on the virtual momenta of internal loops. In a theory
without UV completion (ΛUV → ∞), these phase factors although
efficient in damping out the high-energy part of the graphs be-
come together inefficient to control the vanishing momenta, i.e.,
the original UV divergences reappear as IR divergences. On the
other hand, in presence of a finite ΛUV no one sort of diver-
gence will appear since the said phase factors effectively transform
the highest energy scale (ΛUV) into the lowest one (ΛIR). Be-
sides the appearance of new infrared divergences in the IR limit
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of the external momentum, another two (inseparable) aspects1 of
the UV/IR mixing problem also involve: (i) nonanalytic behavior in
the NC parameter when θ → 0, (ii) pathological behavior when the
spatial extension of size |θ P |, for a particle moving with momen-
tum P along the region affected by spacetime noncommutativity,
gets reduced to a point |θ P | → 0. Note that all aspects of the UV/IR
mixing problem get disappeared if NC gauge theory can be realized
as an effective QFT.

The easiest way to understand the peculiar mixing of UV and
IR effects in (1) is to invoke (ii) above, i.e., an interpretation that
a quantum in NC gauge theory can be thought of as a straight
string connecting two opposite charges [13–15]. Indeed, combining
an uncertainty relation for the coordinates

�xμ�xν > θμν, (2)

where θμν has dimensions of (length)2, with the Heisenberg un-
certainty principle,2 �xi�p j � (1/2)δi j , and switching to the lan-
guage of effective QFT with (�p)max ∼ ΛUV, (�x)max ∼ Λ−1

IR (also
employing Λ−2

NC ∼ |θ |), (1) immediately comes about. If we choose
(without loss of generality) θ to lie in the (1,2) plane, θ1,2 =
−θ2,1 ≡ θ , this means that a particle moving inside the NC plane
with momentum P along the one axis, has a spatial extension of
size |θ P | along the other. The string vector is always perpendicular
to the direction of motion.

In the present Letter, we require that the effective field-
theoretical treatment of NC gauge theories as given by (1) be also
capable of describing a system at the temperature T in a box
of size L. We note that an ordinary effective QFT is expected to
be capable of describing a thermal system provided ΛUV � T as
long as T � L−1. We shall focus mainly on radiation-dominated
epochs in the very early universe, both post- and pre-inflationary
ones, where the temperature is expected to be so high that the
field-theoretical treatment of such epochs also requires spacetime
noncommutativity. In other words, we require that the above effec-
tive description of spacetime noncommutativity be also capable of
describing radiation-dominated epochs in the early universe. Such
a requirement will bring us a valuable information on the param-
eter of spacetime noncommutativity ΛNC.

Sticking to a stringy picture for quanta propagating in NC back-
ground, one immediately sees that having them in thermal equilib-
rium in the volume L3 is precluded if the size of the string exceeds
the size of the box L. The maximal size of the string in the field-
theoretical treatment, for θ lying in the (1,2) plane and averaging
over directions of the momentum of the quantum, can be found to
be

|θ p|max = 1√
2

ΛUV

Λ2
NC

, (3)

where p is the total momentum. Thus, the field-theoretical treat-
ment of spacetime noncommutativity as represented by (1) is ex-
pected to be capable of describing a thermal system (of size L)
if

|θ p|max � L (4)

together with ΛUV � T and T � L−1. This entails the following
upper bound on ΛNC

ΛNC � (2)−1/4L−1/2T 1/2. (5)

1 For an NC field theory model in which different aspects of the UV/IR mixing
problem become disentangled, see [11], with details given in [12].

2 Since we are not interested in the black-hole regime, we do not invoke the
Generalized Uncertainty Principle (GUP) [16] here. Yet the holographic principle is
discussed below in a different manner.
In the early universe, the reheating stage marks an abrupt tran-
sition from a cold, low-entropy phase of the inflatory era and a
subsequent high-entropy radiation-dominated epoch [17,18]. In the
simplest picture which does not include the preheating stage after
inflation [18–20], the vacuum energy of the inflaton field experi-
enced an instantaneous conversion into radiation when the decay
rate of the inflaton field had become equal to the expansion rate
of the universe H . This event defines the reheating temperature as
the maximum temperature of the subsequent radiation-dominated
epoch (although it is not necessarily the maximum temperature of
the universe after inflation [17]). At the time of reheating the Hub-
ble parameter and the reheating temperature are thus related as

H(TRH) =
(

8π3

90
g∗(TRH)

)1/2 T 2
RH

MPl
, (6)

where g∗ is the effective number of relativistic degrees of freedom
and MPl is the Planck mass. The reheating temperature in (6) de-
pends, through the inflaton decay width, both on the inflaton mass
and on its coupling to matter [17,18].

With the most natural choice L−1 = H and using (6), the bound
(5) becomes

ΛNC �
(

4π3

90
g∗(TRH)

)1/4 T 3/2
RH

M1/2
Pl

. (7)

The main reason of why the reheating temperature should not
be too high (thus weakening our bounds) is that one inevitably
overproduces gravitinos in supergravity theories. The limit from
gravitino overproduction is TRH � 109–1010 GeV [21,22]. Taking
the effective number of degrees of freedom at the reheating tem-
perature as for the MSSM (g∗(TRH) = 915/4) one obtains for the
maximum allowable TRH

ΛNC � 500 TeV. (8)

The bound (8) proves to be as powerful as the bound obtained
recently from nonobservation of ultrahigh energy neutrino induced
events in neutrino observatories [23].

Next we demonstrate how the heuristic arguments leading
to (7) can be beefed up by invoking entropic considerations, and,
in particular, the holographic bound. For a collection of strings of
length ∼ Λ−1

IR in the volume ∼ Λ−3
IR , the entropy is bounded by

the Bekenstein bound S B [24]. For a macroscopic system in which
self-gravitation effects can be disregarded, the Bekenstein bound
is given by a product of the energy and the linear size of the
system, E L. In the context of effective QFTs, it becomes propor-
tional Λ4

UVΛ−4
IR . It should be noted that it is more extensive than

the entropy in effective QFTs, SQFT ∼ Λ3
UVΛ−3

IR . On the other hand,
for a weakly gravitating system S B is bounded by the holographic
Bekenstein–Hawking entropy, SBH ∼ Λ−2

IR M2
Pl .

3 Ignoring, for sim-
plicity, the numerical factors, setting4

S B � SBH, (9)

3 It was shown [6] that in the regime obeyed by the present field-theoretical
framework, NC thermodynamical laws are an NC deformation of the usual laws [25,
26]. Thus the commutative area law, SNC

BH = AM2
Pl/4, stays preserved in an NC set-

ting.
4 Setting, on the other hand, SQFT � S B and invoking (1) gives us a consistency

condition for the theory, ΛUV � ΛNC � ΛIR . The final option, SQFT � SBH , means
that with this bound, at saturation, our effective theory should also be capable
of describing systems containing black holes, since it necessarily includes many
states with Schwarzschild radius much larger than the box size. There are how-
ever compelling arguments for why an ordinary local effective QFT appears unlikely
to provide an adequate description of any systems containing black holes.
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and invoking (1), one arrives at

ΛNC �
Λ

3/2
UV

M1/2
Pl

. (10)

Such a framework is capable of describing a thermal system if
ΛUV � T , where T � L−1. This way, (7) is immediately reproduced.
Having employed ΛUV � ΛNC in (10), we obtain that only sub-
planckian noncommutativity, ΛNC � MPl , is allowed by the holo-
graphic bound. In fact, entropic considerations employed here gen-
eralize the bound (5) in such a way that L is being replaced with
the largest possible size of the string consistent with the holo-
graphic bound at the temperature T . In radiation-dominated cos-
mologies, such a scale is provided by the Hubble distance, although
other choices for L are also possible (see below). Now we are on
the much firmer ground with our bounds.

One may object, though, that our bounds include spacetime
noncommutativity on the particle theory side only, and do not
consider the possibility that noncommutativity can affect partic-
ular epochs in the history of the universe or even the whole his-
tory as well [27–31]. Since our interest is in radiation dominated
epochs in the early universe, the only real concern is a fact that NC
spacetime geometry leads to modified dispersion relations [32], af-
fecting in turn various thermodynamical quantities. These become
dependent not only on the temperature, but also on the parame-
ter characterizing spacetime noncommutativity. Even so, our effec-
tive treatment is expected to provide an adequate description of
such systems as long as the hierarchy ΛUV � ΛNC, T is respected.
In particular, a modification of dispersion relations for the radia-
tion has already been studied [4] in the effective field-theoretical
model obeying (1). While at low momentum scales (k 	 ΛIR) one
gets a polarization dependent propagation speed (birefringence),
for ΛIR 	 k 	 �MSUSY a Lorentz violating mass term ∼ �MSUSY
emerges, where �MSUSY is the supertrace of the mass matrix. Thus
at high temperatures of interest here, T � �MSUSY, a modification
to ordinary dispersion relations turns out to be negligible.

The possibility of having a radiation-dominated epoch taken
place before inflation is quite generic in many extensions of the
ΛCDM model, especially in those with a symmetry-breaking phase
transition characterized by a high-energy scale (e.g., GUT sym-
metry breaking) [17]. The solution to such a transition has been
obtained long ago [33]. Recently, the effect of such a pre-inflation
radiation-dominated epoch to CMB anisotropy has been studied
[34,35]. Even the inflation itself may occur in a state with thermal
relativistic matter, when the equation of state turns into that of
inflationary matter under influence of the NC structure of space-
time [32]. All such thermal epochs are expected to be describ-
able altogether by our NC effective QFT approach if the hierarchy
ΛUV � ΛNC, T is respected, supplemented also by a holographic
bound ΛUV � MPl . Having the temperature in these epochs much
higher than in the phase of reheating, the bound on the scale
of noncommutativity (8) is upraised by a tremendous amount.
For instance, for a GUT scale of about 1015 GeV one would have
ΛNC � 1010 TeV. For a radiation-dominated epoch near the Planck
epoch, the bound is obviously saturated by the holographic con-
straint near the Planck mass. It is important to note that our
bounds do not require any prior specification of the cutoffs as
long as the aforementioned hierarchy between the scales stays re-
spected.

Finally, we would like to see to what extent choices different
than L−1 = H could affect our bound (8). For that purpose we re-
sort to a particular cosmological model, which, as a bonus, is also
proven to be successful in describing the present accelerated phase
of the universe. We choose the model for holographic dark energy
[36–38], a stuff prevailing at present times but suppressed at ear-
lier cosmological epochs. For the sake of illustration, we consider
the popular Li’s model [37]. This model belongs to a class of non-
interacting and saturated HDE models, with a choice for L in the
form of the future event horizon,

dE = a

∞∫
a

da

a2 H
, (11)

with a being a scale factor. The vacuum energy density, assumed
not to be responsible for the early-time inflation, is parametrized
as ρΛ = (3/8π)M2

Pld
−2
E . Extracting dE amounts to knowing ρΛ dur-

ing the radiation-domination epoch, in which ρΛ occupies only a
tiny fraction of the total energy density. In a two-component uni-
verse ρΛ evolution is governed by [37,39]5

Ω ′
Λ = Ω2

Λ(1 − ΩΛ)

[
1

ΩΛ

+ 2√
ΩΛ

]
, (12)

where the prime denotes the derivative with respect to ln(a).
In (12) ΩΛ = ρΛ/ρcrit , where ρcrit is the critical density. With
ΩΛ 	 1 and ρcrit � ρrad , we obtain

ρΛ(a) � g∗(a) ρrad0a−3, (13)

where ρrad0 denotes the radiation energy density at the present
time. In turn this, together with a solution of (12) for the matter-
dominated epoch,

ρΛ(a) � ρm0a−2, (14)

determines the ratio L−1/2/H1/2 at the time of reheating as

L−1/2(TRH)

H1/2(TRH)
∼ T0

T 1/4
RH T 3/4

MR

, (15)

where T0 is the temperature of the universe at present and TRM is
the temperature at the moment when the matter density becomes
equal to that of the radiation. Plugging some relevant numbers and
TRH = 1010 GeV, one finds the ratio (14) to be ∼ 10−10. This leads,
via (5), to a insignificant bound on ΛNC. As has been already made
clear with (7), the holographic bound on ΛNC virtually coincides
with the bound (5) for the choice L = H−1. Thus any choice for
L being larger than the Hubble distance at the time of reheating
leads to a weaker bound. This arguably demonstrates how strongly
the choice for the ‘size’ of the universe can influence our bounds.
There are of course other choices for L being relevant for the
bound (5); for instance, the particle horizon. For this choice for
L one would expect a bound similar to (8); however, the employed
model in this case can no longer be responsible for the current
accelerated phase of the universe.

Summing up, we have made use of a reasonable expectation
that thermal epochs in the universe are successfully describable by
conventional QFTs. We have considered the field-theoretical real-
ization of noncommutative gauge field theories and shown, making
use of the specific UV/IR relationship attributive to such an ap-
proach, that adequate description of a thermal system entails an
upper bound on the scale of noncommutativity. We have also dis-
cussed such a bound in conjunction with the holographic bound.
For the reheating stage after inflation we have obtained a bound of
order of 103 TeV. The radiation-dominated epochs at higher tem-
peratures, if existent, would provide much better bounds, possibly
all the way up to the Planck mass. It is important to notice that

5 The modification of the right-hand side of the Einstein equations arising from
the fuzziness of space induced by ΛNC [40] can be shown to be unimportant for
the radiation-dominated epochs of interest here.
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only existence of such epochs matters and not the physics re-
sponsible for their emergence, since in thermal equilibrium the
physical system loses memory of its initial state. We have also
demonstrated how the size and nature of the thermal system may
crucially affect our bounds.
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