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Abstract

Time-lapse microscopy is a powerful, versatile and constantly developing tool for real-
time imaging of living cells. This review outlines the advances of time-lapse microscopy 
and refers to the most interesting reports, thus pointing at the fact that the modern biology 
and medicine are entering the thrilling and promising age of molecular cinematography.
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1. Introduction

Originally described as time-lapse cinemicrography (microphotography) [1], the modern time-lapse 

microscopy (TLM) emerged as a powerful and continuously improving tool for studying the 

cellular processes and cell-cell interactions with the applications ranging from fundamental 

aspects of molecular and cell biology to medical practice. The related time-lapse photography 

is more relevant to observing non-microscopic objects, such as plants and landscapes. TLM 

is the technique of capturing the sequence of microscopic images at regular intervals. TLM 

allows scientists to observe cellular dynamics and behavior of the population of living cells as 

well as of the single living cell within the population [2, 3]. Live cell imaging and the first non-
sophisticated TLM techniques were pioneered at the very beginning of the twentieth century 

[4]. However, to be visible in the light microscope, the cells are to be subjected to fixation and 
staining, the processes that kill the cells. Introduction of phase-contrast microscopy in 1940s, 

development of fluorescent and multidimensional microscopy, flow cytometry and com-

putational tools made live cell imaging a widespread approach and prompted scientists to 

consider TLM as an essential technique that carries an enormous promise for basic biological 
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science and medicine. For this review, we focused on mammalian cell cultures, although TLM 

can also be efficiently employed to study prokaryotic cells and unicellular microorganisms. In 
the absence of up-to-date comprehensive review on TLM advances, our aim was to familiar-

ize the readers with the current advances of TLM methodology and provide for the reference 

guide to the most interesting reports where TLM has been utilized both for biological research 

and clinical purposes.

2. Time-lapse microscopy: from making movies to bedside

2.1. Versatility of TLM

In this part, we will briefly review some selected publications, which highlight the rapid 
development of TLM as a versatile discovery tool within the broad scope of modern biology 

and medicine. Importance of TLM as a new method in biological research was highlighted by 

Burton [5]. The progress of tissue culture methods, phase-contrast microscopy (see below) and 

real-time imaging by TLM enabled scientists to overcome the major limitation of traditional 

microscopy; preparation of very thin transparent samples, which required tissue fixation and 
did not make it possible to investigate living cells, let alone, and biological processes over 

time in the same sample. Early reports demonstrated the feasibility of TLM for comparative 

studies of cultured cells [6–8] and for monitoring living blood and lymph cells [1], cell divi-

sion [9, 10] and reaction of cells to varying contents of electrolytes in perfusion chambers [11]. 

TLM was helpful to decode the process of multinucleation in the developing skeletal muscles 

[12] and to describe the variable cytotoxic response toward allografts [13, 14].

TLM is a suitable tool to monitor cell motility and migration, including quantitative assessment 

of migration, such as the number of migrating cells and the distance [15–20]. In multicellular 

organisms, the directed and coordinated cell migration (chemotaxis) occurs during embry-

onic development, tissue regeneration and inflammatory response [21], while cancer cells 

migrate into surrounding tissues and the vasculature. To monitor chemotaxis, TLM can be 
used together with the Dunn chamber [21–23]; Boyden chamber [24, 25]; Bridge chamber [26]; 

LOCOMOTIS, the motility tracking system [27] and other types of chambers for cell visualiza-

tion and TLM applications [28–30]. TLM was employed to study embryonic stem cells [31]; 

hematopoietic progenitor cells [20, 32–34]; mesenchymal stem cells [35]; activated lympho-

cytes forming lymphocytes colonies [36]; primordial germ cells, a migratory cell population 

that will eventually give rise to the gametes [37–39]; the migration route of progenitor cells 

in cell cultures obtained from live chicken embryos [40, 41]; microglial cells [42–44]; olfac-

tory cells from schizophrenia patients [45]; neurons [46]; chemokines that drive migration 

of megakaryocytes from the proliferative osteoblastic niche within the bone marrow to the 

capillary-rich vascular niche, which is an essential step for platelet production [47]; migra-

tion of osteoclasts toward bone surfaces [48]; motility of cultured endothelial cells to study 

remodeling of their intercellular junctions [49]; generation of a complete polarized epithelial 

monolayer by the epithelial cells of mammary gland [17]; movement of cancer cells that were 

cultured under hypoxic conditions [50] and treated with salinomycin [24]; individual cell 
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motility in fibroblastoid L929 cells [51]; human osteosarcoma MG-63 cells [52]; B35 neuroblas-

toma cells transiently expressing GFP and C6 glioma cells after staining with Hoechst 33258 
[16] and motility of L5222 leukemia cells within the mesentery and migration of induced 

pluripotent cells during their early reprograming [53]. Of note, most studies are devoted to 

neural stem cells [18, 19, 54–63] due to growing clinical importance.

TLM allows investigators to visualize and characterize cell-cell contacts [46, 52, 64–71]. The 

most interesting reports are concerned with the contacts between the various types of stem/

progenitor cells as well as the tumor-environment cell interactions: the importance of proper 

cell-cell contacts level for their correct positioning and cell polarity during organogenesis 

[39], glial-neuronal interactions [72–74], interactions between microglia and brain tumors 

[75], between astrocytes and neural progenitor cells [42], between mesenchymal stem cells 

and human myoblasts [76], dendritic cells [77], endothelial cells [78], cancer cells [79], extra-

cellular matrix molecules [80], between erythroblastic islands in bone marrow [81], between 

neural progenitor cells [62, 82–84], between neural cells and hematopoietic stem cells that 

migrate to the central nervous system [85], hematopoietic stem cells and stromal cells [20], 

endothelial progenitor cells and cardiac myocytes [86], between induced pluripotent cells 

during the early reprogramming phase [53], vesicle traffic through intercellular bridges 
between prostate cancer cells [87] and synaptic contacts [88–94].

Cell division and cell death can be well investigated with TLM [50, 52, 95–97]. Division and 

growth of both labeled [96, 98–100] and non-labeled [101, 102] cells in culture [52, 95, 98, 

103–105] and tissue slices [106], including monitoring of a single cell [95, 99, 107–112], can 

be observed and assessed with TLM. The fluorescent ubiquitination-based cell cycle indica-

tor (FUCCI) system can effectively label individual G1, S/G2/M and G1/S-transition phase 
nuclei as red, green and yellow, respectively, to visualize the real-time cell cycle transitions 

in living mammalian cells [113–116]. Microinjection of complementary RNA to cyclin B1 

was reported as a tool for TLM studying meiosis [117]. Real-time imaging was employed 

to monitor nuclear envelope breakdown, which is one of the major morphological changes 

during mitosis [118] and apoptosis [119]; nucleolar assembly after mitosis [120]; tracking 

of template DNA strands during mitosis [121, 122]; preferred mitotic orientation of daugh-

ter cells, which is important for their following self-organization and tissue formation [123, 

124]; interkinetic nuclear migration toward the apical surface in epithelial cells [125, 126]; 

multinucleation of skeletal muscle cells [12]; asymmetric division of stem cells [127–129]; 

identification and characterization of cell division genes by combining RNA interference, 
time-lapse microscopy and computational image processing [130]; cytokinesis [131, 132]; 

cleavage furrow [133]; abscission by using TLM in combination with electron microscopy 

[134, 135] and mitotic synchronization in the cell population [136]. The observations related 

to cellular senescence and various forms of cell death include re-entry into the cell cycle [10, 

124, 137–139] and variable frequency of divisions [140]; changes in mitotic and interphase 

duration [141–147]; short G1 phase, which is a distinctive feature of mouse embryonic stem 

cells [148]; delayed G2 phase [149]; neosis, the term used for karyokinesis via nuclear bud-

ding followed by asymmetric, intracellular cytokinesis [150]; secretion of exosomes with 
anti-apoptotic microRNAs [151]; apoptosis [119, 152–156]; phagocytosis of apoptotic cells 

[157]; necrosis [158]; autophagy [159]; mitotic catastrophe [52, 143] and phototoxicity [160].
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TLM can also be used to study intracellular dynamics of subcellular organelles [161, 162], natu-

ral cellular proteins and reporters, introduced nanoparticles and even physiological effects of 
small inorganic molecules and gases. Time-lapse imaging was used to monitor and quantify 

movements and changes in mitochondria [163–165]; Golgi apparatus [166]; centrosomes and 

microtubules [167–170]; centromeres [171]; cellular membrane [172]; dendritic spines [173]; 

dynamics of interkinetic nuclear migration [174, 175]; intercellular uptake and distribution 

of nano-sized (less than 100 mkm) ceramic particles [176]; intracellular translocation of p65 

and IkappaB-alpha proteins [177]; intracellular distribution of integrin beta1 and F-actin 

[178]; fluctuations in Notch signaling to maintain neural progenitors [179]; re-localization of 

PP1gamma, which is implicated in multiple cell cycle-related processes including regulation 
of chromosome segregation and cytokinesis [180]; movement of the replication origin region 

of the chromosome during the cell cycle in Bacillus subtilis [181]; dynamics of 53BP1 protein in 
DNA-damage response [182]; measuring gene dynamics with luciferase as a reporter [183]; 

colocalization of MAP kinases in mitochondria [184]; clustering of acetylcholine receptor on 

myotubes [185]; multiple chromosomal populations of topoisomerase II [186]; focal points 

for chromosome condensation and decondensation [187]; intracellular calcium dynamics 

[188, 189] and single-cell time-lapse imaging of intracellular O
2
 [190].

Although TLM is mostly used with cultured mammalian cells and live cells in tissues, the 

significant number of reports indicates that TLM could be employed to observe and study 
prokaryotic cells and other unicellular and multicellular organisms as well as viruses. Here, 

we mention only few examples, such as time-lapse imaging of growth, cell-cell contacts and 
formation of spherical granules in E. coli [191–194]; time-lapse visualization of bacterial colony 

morphologies in the special bacterial chamber MOCHA [195]; screening and assessing effects 
of antibiotics, such as antibiotics-bacteria interactions [196–199] and studying yeasts [200–202] 

and viruses [203–207]. The smaller microorganisms, analogously to intracellular structures, 

usually require higher magnification and more sophisticated microscopic equipment.

2.2. TLM technical approaches

TLM monitoring of mammalian cells usually requires the inverted microscope, which is fully 

or partially enclosed by a cell incubator (environmental chamber), a partly sealed transparent 

box that maintains the temperature, humidity and even partial gas (carbon dioxide) pressure, 
protects cultured cells from the light and allows the investigator to manipulate with the micro-

scope in order to choose the field of view and adjust other imaging parameters [208–210]. 

The TLM chambers and devices underwent significant improvements over the time, from the 
simple glass tissue chambers and manual capturing sequences of images to the automated 

high-resolution microscopes and sophisticated computerized equipment for long-term TLM 

observations [154, 162, 211–219]. The up-to-date portable live cell culture monitor (CytoSMART 

Technologies, Eindhoven, The Netherlands) works within the regular CO
2
 incubator. The cul-

ture flask (T-flask, Petri dish, wells or any other transparent vessel) is positioned onto the lens 
of the device; the field of view is chosen by the investigator, and the cell growth and migration 
can be monitored and analyzed in the real-time mode by accessing the cloud [52].

The phase-contrast method of imaging is based on the ability of materials with a different refrac-

tive index to delay the passage of the light through the sample by different amounts, so that 
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they appear darker or brighter. This is the most common TLM technique that is used since 1950s 

[1, 6, 7, 11] for studying different types of cells and microorganisms both alone and in combina-

tion with electron microscopy [220–222]. The so-called differential interference contrast (DIC) 
microscopy (Nomarski microscopy) also produces high-contrast images of transparent non-

stained biological objects, and it has been broadly used for TLM [223–226]. Fluorescent TLM 

dating back in 1950s TLM [9, 227] can be used nowadays with fluorescent proteins-reporters 
[207, 228–231], fluorescent nanoparticles [232, 233] and membrane dyes [160, 234, 235]. As 

the further proof of TLM flexibility, we present some reports where TLM is combined with 
other advanced microscopy techniques: multiplexed or multifield (recording of many fields 
simultaneously) TLM [236, 237], confocal TLM [156, 171, 207, 238–242], multi-photon TLM 

[58, 243–245], the so-called four-dimensional imaging (three-dimensional images over time) 

[242, 246], time-lapse bioluminescence analysis [247], Forster resonance energy transfer (FRET) 

microscopy [248], time-lapse optical coherence tomography [249–251], in toto imaging to image 

and track every single cell movement and division during the development of organs and 

tissues [241] and other innovative approaches [50, 252]. TLM can be used to monitor not only 

cultured cells (cell population and single cell [109] but also living cells in tissue slices up to a 

depth of 60 micrometers in brain slices, in regions where cell bodies remain largely uninjured 

by the tissue preparation and are visible in their natural environment [229, 253]. For real-time 

observation of corneal cells in a living mouse, a novel microscope system was designed, which 

consists of an upright fluorescence microscope for visualization of corneal cells, a mouse-
holding unit for immobilization of the animal and the eye and a set of gimbals which permit 

observation of a wide area of corneal surface without refocusing [254].

TLM would not be possible without an automated image analysis, which is used to extract 
meaningful data from the bulk of images. Automated cell tracking faces problems associated 

with high cell density; cell mobility; cell division; multiple cell parameters such as object size, 

position or texture; cell lysis or overlap of cells [255]. A variety of algorithms, including seg-

mentation (the process of partitioning a digital image into multiple sets of pixels or segments) 
algorithms, have been developed, and they are constantly improving. For most datasets, a 

preprocessing step is needed before information can be extracted. Irregular illumination and 
shading effects can be removed by using a background subtraction method. Other commonly 

used techniques include contrast enhancement and noise filtering [256]. In some cases, registra-

tion is needed to align subsequent image frames and compensate for unwanted movements. 

Global movements can be caused by movement of the specimen or imaging equipment, but 

local deformations in the specimen might also have to be corrected for. This is especially 

the case when considering TLM of living animals, which is heavily affected by breathing 
and heartbeat [257]. At higher magnifications, when studying intracellular dynamics, cell 
migration itself might also be considered an unwanted movement that has to be corrected 

[258]. Object detection is a set of techniques to separate objects of interest from the background. 

The objects of interest can be cells or intracellular particles [130, 259]. Basic segmentation 

techniques can be sufficient to detect individual cells, although more advanced techniques 
are still being developed to cope with increasingly complex data [260, 261]. Finally, several 

analysis techniques are available to quantify the different types of cell behavior over time, for 
example, trajectory analysis for assessing trajectory length and directional persistence [262]. 

By now, various algorithms are designed for quantifying and tracking cell migration [3] and 
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single cell motility [261, 263]; cell proliferation [264]; cell cycle and cell lineage analysis [107]; 

changes in mitotic and interphase duration [141]; cell-cell contacts [52]; studying specific cells 
and tissues [265] and specific intracellular processes such as transcription [99] or morphogen-

esis [266]; colocalization of cells and intracellular markers [184]; tracking cellular organelles 

[258]; highlighting the certain cell type within tissues or mixed cell cultures [267]; clustered, 

overlapping or dying cells [268]; in toto imaging of developing organisms, tissues and organs 

[241] and assessing development and selection of embryos for in vitro fertilization [269, 270].

2.3. TLM for assisted reproductive technology and its promise for clinical medicine

TLM is emerging as a promising clinical technique for selecting embryos for transplanta-

tion, although the discussion is still under way whether TLM may become an alternative 

to preimplantation genetic screening [271, 272]. The so-called morphokinetic analysis [273] 

by TLM is aimed to assess the number, development and quality (viability) of embryos 

by monitoring cleavage anomalies, multinucleation [274] or specific cell cycle kinetics 
[274, 275] and cleavage divisions [276], aneuploidy [277, 278], which is considered as a 

key causal factor of delays in embryonic development toward a blastocyte [278], and even 

chromosomal abnormalities [279]. Although more clinical research is required to finally 
prove that TLM can identify the best embryo for transfer and has an advantage over the 

conventional incubation of embryos [280], TLM is under consideration for patenting as a 

method for selecting embryos for implantation [281, 282]. TLM can also be used for sperm 

motility analysis [283].

One of the potential medical applications of TLM is the assessment of ex vivo engineered cells 

for cell therapy of degenerative and inherited disorders and other human pathologies like 

cancer [284–288]. TLM can also be used for diagnostics, for example, for detecting abnor-

malities in cell behavior in human dystrophic muscle cultures [289] or estimating tumor 

malignancy [290] in drug discovery [291], for testing gene therapeutic agents [292] and for 

evaluating side effects of antibiotics [293] and efficacy of chemotherapeutics [294, 295]. TLM 

is a valuable tool for understanding the pathogenesis of certain disorders, such as dysplastic 

erythroblast formation of erythroblasts from the patient with congenital dyserythropoietic 

anemia [296], thrombus formation [224], IgE-mediated mast cell degranulation and recovery 

[297], imaging of disease progression in deep brain areas using fluorescence microendoscopy 
[298], reprogramming in induced pluripotent cells [110] and other applications.

3. Conclusion

TLM is a powerful and versatile tool in modern biological research, with the immense 

potential for future clinical applications. One of the probably underexplored features of 
TLM is its promise to further characterize heterogeneity of cells within tissues [144], in 

particular, stem/progenitor cells and differentiating cells [299] as well as cancer cells [300]. 

Some of the above-mentioned methods are associated with unavoidable costs (expensive 
equipment, such as lenses, filters and sensors, and their damage due to high humidity 
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within the incubator), non-natural impacts on living cells by the high excitation energy of 
lasers and bleaching/degradation of the fluorochromes over time, which influences quan-

tification of long-running processes. However, the growing number of reports about new 
improvements and advances in TLM techniques and TLM-related applications that provide 

valuable information, which is not imageable by other techniques, makes it possible to 

conclude that the era of microcinematography in biomedical research has just begun.
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