Extending Event-Driven Architecture for Proactive Systems

Abstract

ABSTRACT Proactive Event-Driven Computing is a new paradigm, in which a decision is not made due to explicit users' requests nor is it made as a response to past events. Rather, the decision is autonomously triggered by forecasting future states. Proactive event-driven computing requires a departure from current event-driven architectures to ones capable of handling uncertainty and future events, and real-time decision making. We present a proactive event-driven architecture for Scalable Proactive Event-Driven Decision-making (SPEEDD), which combines these capabilities. The proposed architecture is composed of three main components: complex event processing, real-time decision making, and visualization. This architecture is instantiated by a real use case from the traffic management domain. In the future, the results of actual implementations of the use case will help us revise and refine the proposed architecture

    Similar works