7,509 research outputs found

    Plasticizer degradation by marine bacterial isolates : a proteogenomic and metabolomic characterization

    Get PDF
    Many commercial plasticizers are toxic endocrine-disrupting chemicals that are added to plastics during manufacturing and may leach out once they reach the environment. Traditional phthalic acid ester plasticizers (PAEs), such as dibutyl phthalate (DBP) and bis(2-ethyl hexyl) phthalate (DEHP), are now increasingly being replaced with more environmentally friendly alternatives, such as acetyl tributyl citrate (ATBC). While the metabolic pathways for PAE degradation have been established in the terrestrial environment, to our knowledge, the mechanisms for ATBC biodegradation have not been identified previously and plasticizer degradation in the marine environment remains underexplored. From marine plastic debris, we enriched and isolated microbes able to grow using a range of plasticizers and, for the first time, identified the pathways used by two phylogenetically distinct bacteria to degrade three different plasticizers (i.e., DBP, DEHP, and ATBC) via a comprehensive proteogenomic and metabolomic approach. This integrated multi-OMIC study also revealed the different mechanisms used for ester side-chain removal from the different plasticizers (esterases and enzymes involved in the β-oxidation pathway) as well as the molecular response to deal with toxic intermediates, that is, phthalate, and the lower biodegrading potential detected for ATBC than for PAE plasticizers. This study highlights the metabolic potential that exists in the biofilms that colonize plastics-the Plastisphere-to effectively biodegrade plastic additives and flags the inherent importance of microbes in reducing plastic toxicity in the environment

    Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation

    Get PDF
    Reducing building energy demand is a crucial part of the global response to climate change, and evolutionary algorithms (EAs) coupled to building performance simulation (BPS) are an increasingly popular tool for this task. Further uptake of EAs in this industry is hindered by BPS being computationally intensive: optimisation runs taking days or longer are impractical in a time-competitive environment. Surrogate fitness models are a possible solution to this problem, but few approaches have been demonstrated for multi-objective, constrained or discrete problems, typical of the optimisation problems in building design. This paper presents a modified version of a surrogate based on radial basis function networks, combined with a deterministic scheme to deal with approximation error in the constraints by allowing some infeasible solutions in the population. Different combinations of these are integrated with Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and applied to three instances of a typical building optimisation problem. The comparisons show that the surrogate and constraint handling combined offer improved run-time and final solution quality. The paper concludes with detailed investigations of the constraint handling and fitness landscape to explain differences in performance

    Deserts and pile-ups in the distribution of exoplanets due to photoevaporative disc clearing

    Full text link
    We present models of giant planet migration in evolving protoplanetary discs. We show that disc clearing by EUV photoevaporation can have a strong effect on the distribution of giant planet semi-major axes. During disc clearing planet migration is slowed or accelerated in the region where photoevaporation opens a gap in the disc, resulting in "deserts" where few giant planets are found and corresponding "pile-ups" at smaller and larger radii. However, the precise locations and sizes of these features are strong functions of the efficiency of planetary accretion, and therefore also strongly dependent on planet mass. We suggest that photoevaporative disc clearing may be responsible for the pile-up of ~Jupiter-mass planets at ~1AU seen in exoplanet surveys, and show that observations of the distribution of exoplanet semi-major axes can be used to test models of both planet migration and disc clearing.Comment: 5 pages, 3 figures. Accepted for publication in MNRAS Letter

    Eosinophils Promote Effector Functions of Lung Group 2 Innate Lymphoid Cells in Allergic Airway Inflammation in Mice

    Get PDF
    BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are critical mediators of type 2 respiratory inflammation, releasing IL-5 and IL-13 and promoting the pulmonary eosinophilia associated with allergen provocation. Although ILC2s have been shown to promote eosinophil activities, the role of eosinophils in group 2 innate lymphoid cell (ILC2) responses is less well defined. OBJECTIVE: We sought to investigate the role of eosinophils in activation of ILC2s in models of allergic asthma and in vitro. METHODS: Inducible eosinophil-deficient mice were exposed to allergic respiratory inflammation models of asthma, such as ovalbumin or house dust mite challenge, or to innate models of type 2 airway inflammation, such as inhalation of IL-33. Eosinophil-specific IL-4/13-deficient mice were used to address the specific roles for eosinophil-derived cytokines. Direct cell interactions between ILC2s and eosinophils were assessed by in vitro culture experiments. RESULTS: Targeted depletion of eosinophils resulted in significant reductions of total and IL-5 CONCLUSION: These studies demonstrate that eosinophils play a reciprocal role in ILC2 effector functions as part of both adaptive and innate type 2 pulmonary inflammatory events

    A detailed phenotypic assessment of individuals affected by MFRP-related oculopathy

    Get PDF
    Purpose: To determine the spectrum of mutations and phenotypic variability within patients with mutations in membrane-type frizzled related protein gene (MFRP).Methods: Individuals were initially ascertained based on a phenotype similar to that previously published in association with MFRP mutations. Affected patients underwent a full ophthalmic examination (best-corrected visual acuity, slit-lamp examination, applanation tonometry, and fundoscopy), color fundus photography, optical coherence tomography, autofluorescence imaging, and electrophysiology. MFRP was identified by a genome-wide scan in the fourth-largest autozygous region in one consanguineous family. Sanger sequencing of all the exons and intron-exon boundaries of MFRP was undertaken in the affected individuals.Results: Seven affected individuals from four families were identified as having mutations in MFRP. Patients from two families were homozygous for mutations already previously described (c. 1143_1144 insC and c. 492 delC), while those from the other two were compound heterozygous for mutations (c. 201G>A and c. 491_492 insT, and c. 492 delC, and c. 1622_1625 delTCTG), three of which were novel. There was considerable phenotypic variability within and among families. Autofluorescence imaging revealed the central macula to be relatively well preserved. Foveal cysts and optic nerve head drusen were present in two of the four families. Electrophysiology results showed rod-cone dystrophy with mild to moderate reduction in macular function in all affected members.Conclusions: We report three novel MFRP mutations and expand the phenotypic data available on patients with MFRP mutations
    • …
    corecore