26 research outputs found

    Terahertz-wave decoding of femtosecond extreme-ultraviolet light pulses

    Get PDF
    In recent years, femtosecond extreme-ultraviolet (XUV) and x-ray pulses from free-electron lasers have developed into important probes to monitor processes and dynamics in matter on femtosecond-time and angstrom-length scales. With the rapid progress of versatile ultrafast x-ray spectroscopy techniques and more sophisticated data analysis tools, accurate single-pulse information on the arrival time, duration, and shape of the probing x-ray and XUV pulses becomes essential. Here, we demonstrate that XUV pulses can be converted into terahertz electromagnetic pulses using a spintronic terahertz emitter. We observe that the duration, arrival time, and energy of each individual XUV pulse is encoded in the waveform of the associated terahertz pulses, and thus can be readily deduced from single-shot terahertz time-domain detection

    Photon shot-noise limited transient absorption soft X-ray spectroscopy at the European XFEL

    Get PDF
    Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy & Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot-by-shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, the DSSC imaging detector, which is capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst, is employed and allows approaching the photon shot-noise limit. We review the setup and its capabilities, as well as the online and offline analysis tools provided to users.Comment: 11 figure

    Global Genomic Analysis of SARS-CoV-2 RNA Dependent RNA Polymerase Evolution and Antiviral Drug Resistance.

    Get PDF
    A variety of antiviral treatments for COVID-19 have been investigated, involving many repurposed drugs. Currently, the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp, encoded by nsp12-nsp7-nsp8) has been targeted by numerous inhibitors, e.g., remdesivir, the only provisionally approved treatment to-date, although the clinical impact of these interventions remains inconclusive. However, the potential emergence of antiviral resistance poses a threat to the efficacy of any successful therapies on a wide scale. Here, we propose a framework to monitor the emergence of antiviral resistance, and as a proof of concept, we address the interaction between RdRp and remdesivir. We show that SARS-CoV-2 RdRp is under purifying selection, that potential escape mutations are rare in circulating lineages, and that those mutations, where present, do not destabilise RdRp. In more than 56,000 viral genomes from 105 countries from the first pandemic wave, we found negative selective pressure affecting nsp12 (Tajima's D = -2.62), with potential antiviral escape mutations in only 0.3% of sequenced genomes. Potential escape mutations included known key residues, such as Nsp12:Val473 and Nsp12:Arg555. Of the potential escape mutations involved globally, in silico structural models found that they were unlikely to be associated with loss of stability in RdRp. No potential escape mutation was found in a local cohort of remdesivir treated patients. Collectively, these findings indicate that RdRp is a suitable drug target, and that remdesivir does not seem to exert high selective pressure. We anticipate our framework to be the starting point of a larger effort for a global monitoring of drug resistance throughout the COVID-19 pandemic

    Evaluation of the clinical relevance of the Biofire©^{©} FilmArray pneumonia panel among hospitalized patients

    Get PDF
    PURPOSE: Panel PCR tests provide rapid pathogen identification. However, their diagnostic performance is unclear. We assessed the performance of the Biofire©^{©} FilmArray pneumonia (PN)-panel against standard culture in broncho-alveolar lavage (BAL) samples. METHODS: Setting: University Hospital Basel (February 2019 to July 2020), including hospitalized patients with a BAL (± pneumonia). We determined sensitivity and specificity of the PN-panel against standard culture. Using univariate logistic regression, we calculated odds ratios (OR) for pneumonia according to PN-panel and culture status, stratifying by chronic pulmonary disease. We calculated ORs for pneumonia for different pathogens to estimate the clinical relevance. RESULTS: We included 840 adult patients, 60% were males, median age was 68 years, 35% had chronic pulmonary disease, 21% had pneumonia, and 36% had recent antibiotic use. In 1078 BAL samples, bacterial pathogens were detected in 36% and 16% with PN-panel and culture, respectively. The overall sensitivity and specificity of the PN-panel was high, whereas the positive predictive value was low. The OR of pneumonia was 1.1 (95% CI 0.7-1.6) for PN-panel-positive only; 2.6 (95% CI 1.3-5.3) for culture-positive only, and 1.6 (95% CI 1.0-2.4) for PN-panel and culture-positive. The detection rate of Haemophilus influenzae, Staphylococcus aureus, and Moraxella catarrhalis in the PN-panel was high but not associated with pneumonia. CONCLUSION: While sensitivity and specificity of PN-panel are high compared to culture, pathogen detection did not correlate well with a pneumonia diagnosis. Patients with culture-positive BAL had the highest OR for pneumonia-thus the impact of the PN-panel on clinical management needs further evaluation in randomized controlled trials

    Aspergillus fumigatus Infection-Induced Neutrophil Recruitment and Location in the Conducting Airway of Immunocompetent, Neutropenic, and Immunosuppressed Mice

    Get PDF
    Susceptibility to fungal infection is commonly associated with impaired neutrophil responses. To study the mechanisms underlying this association, we investigated neutrophil recruitment to the conducting airway wall after Aspergillus fumigatus conidium inhalation in mouse models of drug-induced immunosuppression and antibody-mediated neutrophil depletion (neutropenia) by performing three-dimensional confocal laser-scanning microscopy of whole-mount primary bronchus specimens. Actin staining enabled visualization of the epithelial and smooth muscle layers that mark the airway wall. Gr-1+ or Ly6G+ neutrophils located between the epithelium and smooth muscles were considered airway wall neutrophils. The number of airway wall neutrophils for immunocompetent, immunosuppressed, and neutropenic mice before and 6 h after A. fumigatus infection were analyzed and compared. Our results show that the number of conducting airway wall neutrophils in immunocompetent mice significantly increased upon inflammation, while a dramatic reduction in this number was observed following immunosuppression and neutropenia. Interestingly, a slight increase in the infiltration of neutrophils into the airway wall was detected as a result of infection, even in immunosuppressed and neutropenic mice. Taken together, these data indicate that neutrophils are present in intact conducting airway walls and the number elevates upon A. fumigatus infection. Conducting airway wall neutrophils are affected by both neutropenia and immunosuppression

    Murine Intraepithelial Dendritic Cells Interact With Phagocytic Cells During Aspergillus fumigatus-Induced Inflammation

    No full text
    People are constantly exposed to airborne fungal spores, including Aspergillus fumigatus conidia that can cause life-threatening conditions in immunocompromised patients or acute exacerbations in allergics. However, immunocompetent hosts do not exhibit mycoses or systemic inflammation, due to the sufficient but not excessive antifungal immune response that prevent fungal invasion. Intraepithelial dendritic cells (IE-DCs) of the conducting airway mucosa are located in the primary site of the inhalant pathogen entry; these cells can sense A. fumigatus conidia and maintain homeostasis. The mechanisms by which IE-DCs contribute to regulating the antifungal immune response and controlling conidia dissemination are not understood. To clarify the role of IE-DCs in the balance between pathogen sensing and immune tolerance we investigated the A. fumigatus conidia distribution in optically cleared mouse lungs and estimated the kinetics of the local phagocytic response during the course of inflammation. MHCII+ antigen-presenting cells, including IE-DCs, and CD11b+ phagocytes were identified by immunohistochemistry and three-dimensional fluorescence confocal laser-scanning microscopy of conducting airway whole-mounts. Application of A. fumigatus conidia increased the number of CD11b+ phagocytes in the conducting airway mucosa and induced the trafficking of these cells through the conducting airway wall to the luminal side of the epithelium. Some CD11b+ phagocytes internalized conidia in the conducting airway lumen. During the migration through the airway wall, CD11b+ phagocytes formed clusters. Permanently located in the airway wall IE-DCs contacted both single CD11b+ phagocytes and clusters. Based on the spatiotemporal characteristics of the interactions between IE-DCs and CD11b+ phagocytes, we provide a novel anatomical rationale for the contribution of IE-DCs to controlling the excessive phagocyte-mediated immune response rather than participating in pathogen uptake
    corecore