14 research outputs found

    Flexoelectric effect in finite samples

    Full text link
    Static flexoelectric effect in a finite sample of a solid is addressed in terms of phenomenological theory for the case of a thin plate subjected to bending. It has been shown that despite an explicit asymmetry inherent to the bulk constitutive electromechanical equations which take into account the flexoelectric coupling, the electromechanical response for a finite sample is "symmetric". "Symmetric" means that if a sensor and an actuator are made of a flexoelectric element, performance of such devices can be characterized by the same effective piezoelectric coefficient. This behavior is consistent with the thermodynamic arguments offered earlier, being in conflict with the current point of view on the matter in literature. This result was obtained using standard mechanical boundary conditions valid for the case where the polarization vanishes at the surface. It was shown that, for the case where there is the polarization is nonzero at the surface, the aforementioned symmetry of electromechanical response may be violated if standard mechanical boundary conditions are used, leading to a conflict with the thermodynamic arguments. It was argued that this conflict may be resolved when using modified mechanical boundary conditions. It was also shown that the contribution of surface piezoelectricity to the flexoelectric response of a finite sample is expected to be comparable to that of the static bulk contribution (including the material with high values of the dielectric constant) and to scale as the bulk value of the dielectric constant (similar to the bulk contribution). This finding implies that if the experimentally measured flexoelectric coefficient scales as the dielectric constant of the material, this does not imply that the measured flexoelectric response is controlled by the static bulk contribution to the flexoelectric effect

    Magnetization reversal in YIG/GGG(111) nanoheterostructures grown by laser molecular beam epitaxy

    No full text
    Thin (4–20 nm) yttrium iron garnet (Y3Fe5O12, YIG) layers have been grown on gadolinium gallium garnet (Gd3Ga5O12, GGG) 111-oriented substrates by laser molecular beam epitaxy in 700–1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface. As the growth temperature is increased from 700 to 1000 °C the terraces become wider and the growth gradually changes from layer by layer to step-flow regime. Crystal structure studied by electron and X-ray diffraction showed that YIG lattice is co-oriented and laterally pseudomorphic to GGG with small rhombohedral distortion present perpendicular to the surface. Measurements of magnetic moment, magneto-optical polar and longitudinal Kerr effect (MOKE), and X-ray magnetic circular dichroism (XMCD) were used for study of magnetization reversal for different orientations of magnetic field. These methods and ferromagnetic resonance studies have shown that in zero magnetic field magnetization lies in the film plane due to both shape and induced anisotropies. Vectorial MOKE studies have revealed the presence of an in-plane easy magnetization axis. In-plane magnetization reversal was shown to occur through combination of reversible rotation and abrupt irreversible magnetization jump, the latter caused by domain wall nucleation and propagation. The field at which the flip takes place depends on the angle between the applied magnetic field and the easy magnetization axis and can be described by the modified Stoner–Wohlfarth model taking into account magnetic field dependence of the domain wall energy. Magnetization curves of individual tetrahedral and octahedral magnetic Fe3+ sublattices were studied by XMCD

    Reprint of: CYP1A protein expression and catalytic activity in double-crested cormorants experimentally exposed to deepwater Horizon Mississippi Canyon 252 oil

    Get PDF
    Double-crested cormorants (Phalacrocorax auritus, DCCO) were orally exposed to Deepwater Horizon Mississippi Canyon 252 (DWH) oil to investigate oil-induced toxicological impacts. Livers were collected for multiple analyses including cytochrome P4501A (CYP1A) enzymatic activity and protein expression. CYP1A enzymatic activity was measured by alkoxyresorufin O-dealkylase (AROD) assays. Activities specific to the O-dealkylation of four resorufin ethers are reported: benzyloxyresorufin O-debenzylase (BROD), ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), and pentoxyresorufin O-depentylase (PROD). CYP1A protein expression was measured by western blot analysis with a CYP1A1 mouse monoclonal antibody. In study 1, hepatic BROD, EROD, and PROD activities were significantly induced in DCCO orally exposed to 20 ml/ kg body weight (bw) oil as a single dose or daily for 5 days. Western blot analysis revealed hepatic CYP1A protein induction in both treatment groups. In study 2 (5 ml/kg bw oil or 10 ml/kg bw oil, 21 day exposure), all four hepatic ARODs were significantly induced. Western blots showed an increase in hepatic CYP1A expression in both treatment groups with a significant induction in birds exposed to 10 ml/kg oil. Significant correlations were detected among all 4 AROD activities in both studies and between CYP1A protein expression and both MROD and PROD activities in study 2. EROD activity was highest for both treatment groups in both studies while BROD activity had the greatest fold-induction. While PROD activity values were consistently low, the fold induction was high, usually 2nd highest to BROD activity. The observed induced AROD profiles detected in the present studies suggest both CYP1A4/1A5 DCCO isoforms are being induced after MC252 oil ingestion. A review of the literature on avian CYP1A AROD activity levels and protein expression after exposure to CYP1A inducers highlights the need for species-specific studies to accurately evaluate avian exposure to oil

    Reprint of: Overview of avian toxicity studies for the Deepwater Horizon Natural Resource Damage Assessment

    Get PDF
    The Oil Pollution Act of 1990 establishes liability for injuries to natural resources because of the release or threat of release of oil. Assessment of injury to natural resources resulting from an oil spill and development and implementation of a plan for the restoration, rehabilitation, replacement or acquisition of natural resources to compensate for those injuries is accomplished through the Natural Resource Damage Assessment (NRDA) process. The NRDA process began within a week of the Deepwater Horizon oil spill, which occurred on April 20, 2010. During the spill, more than 8500 dead and impaired birds representing at least 93 avian species were collected. In addition, there were more than 3500 birds observed to be visibly oiled. While information in the literature at the time helped to identify some of the effects of oil on birds, it was not sufficient to fully characterize the nature and extent of the injuries to the thousands of live oiled birds, or to quantify those injuries in terms of effects on bird viability. As a result, the US Fish and Wildlife Service proposed various assessment activities to inform NRDA injury determination and quantification analyses associated with the Deepwater Horizon oil spill, including avian toxicity studies. The goal of these studies was to evaluate the effects of oral exposure to 1–20 ml of artificially weathered Mississippi Canyon 252 oil kg bw-1 day-1 from one to 28 days or one to five applications of oil to 20% of the bird\u27s surface area. It was thought that these exposure levels would not result in immediate or short-term mortality but might result in physiological effects that ultimately could affect avian survival, reproduction and health. These studies included oral dosing studies, an external dosing study, metabolic and flight performance studies and field-based flight studies. Results of these studies indicated changes in hematologic endpoints including formation of Heinz bodies and changes in cell counts. There were also effects on multiple organ systems, cardiac function and oxidative status. External oiling affected flight patterns and time spent during flight tasks indicating that migration may be affected by short-term repeated exposure to oil. Feather damage also resulted in increased heat loss and energetic demands. The papers in this special issue indicate that the combined effects of oil toxicity and feather effects in avian species, even in the case of relatively light oiling, can significantly affect the overall health of birds
    corecore