123 research outputs found

    Blood-based markers of efficacy and resistance to cetuximab treatment in metastatic colorectal cancer: results from CALGB 80203 (Alliance)

    Get PDF
    Circulating protein markers were assessed in patients with colorectal cancer (CRC) treated with cetuximab in CALGB 80203 to identify prognostic and predictive biomarkers. Patients with locally advanced or metastatic CRC received FOLFOX or FOLFIRI chemotherapy (chemo) or chemo in combination with cetuximab. Baseline plasma samples from 152 patients were analyzed for six candidate markers [epidermal growth factor (EGF), heparin-binding EGF (HBEGF), epidermal growth factor receptor (EGFR), HER2, HER3, and CD73]. Analyte levels were associated with survival endpoints using univariate Cox proportional hazards models. Predictive markers were identified using a treatment-by-marker interaction term in the Cox model. Plasma levels of EGF, HBEGF, HER3, and CD73 were prognostic for overall survival (OS) across all patients (KRAS mutant and wild-type). High levels of EGF predicted for lack of OS benefit from cetuximab in KRAS wild-type (WT) patients (chemo HR = 0.98, 95% CI = 0.74-1.29; chemo+cetuximab HR = 1.54, 95% CI = 1.05-2.25; interaction P = 0.045) and benefit from cetuximab in KRAS mutant patients (chemo HR = 1.72, 95% CI = 1.02-2.92; chemo+cetuximab HR = 0.90, 95% CI = 0.67-1.21; interaction P = 0.026). Across all patients, higher HER3 levels were associated with significant OS benefit from cetuximab treatment (chemo HR = 4.82, 95% CI = 1.68-13.84; chemo+cetuximab HR = 0.95, 95% CI = 0.31-2.95; interaction P = 0.046). CD73 was also identified as predictive of OS benefit in KRAS WT patients (chemo HR = 1.28, 95% CI = 0.88-1.84; chemo+cetuximab HR = 0.60, 95% CI = 0.32-1.13; interaction P = 0.049). Although these results are preliminary, and confirmatory studies are necessary before clinical application, the data suggest that HER3 and CD73 may play important roles in the biological response to cetuximab

    Blood�based markers of efficacy and resistance to cetuximab treatment in metastatic colorectal cancer: results from CALGB 80203 (Alliance)

    Get PDF
    Circulating protein markers were assessed in patients with colorectal cancer (CRC) treated with cetuximab in CALGB 80203 to identify prognostic and predictive biomarkers. Patients with locally advanced or metastatic CRC received FOLFOX or FOLFIRI chemotherapy (chemo) or chemo in combination with cetuximab. Baseline plasma samples from 152 patients were analyzed for six candidate markers [epidermal growth factor (EGF), heparin�binding EGF (HBEGF), epidermal growth factor receptor (EGFR), HER2, HER3, and CD73]. Analyte levels were associated with survival endpoints using univariate Cox proportional hazards models. Predictive markers were identified using a treatment�by�marker interaction term in the Cox model. Plasma levels of EGF, HBEGF, HER3, and CD73 were prognostic for overall survival (OS) across all patients (KRAS mutant and wild�type). High levels of EGF predicted for lack of OS benefit from cetuximab in KRAS wild�type (WT) patients (chemo HR = 0.98, 95% CI = 0.74–1.29; chemo+cetuximab HR = 1.54, 95% CI = 1.05–2.25; interaction P = 0.045) and benefit from cetuximab in KRAS mutant patients (chemo HR = 1.72, 95% CI = 1.02–2.92; chemo+cetuximab HR = 0.90, 95% CI = 0.67–1.21; interaction P = 0.026). Across all patients, higher HER3 levels were associated with significant OS benefit from cetuximab treatment (chemo HR = 4.82, 95% CI = 1.68–13.84; chemo+cetuximab HR = 0.95, 95% CI = 0.31–2.95; interaction P = 0.046). CD73 was also identified as predictive of OS benefit in KRAS WT patients (chemo HR = 1.28, 95% CI = 0.88–1.84; chemo+cetuximab HR = 0.60, 95% CI = 0.32–1.13; interaction P = 0.049). Although these results are preliminary, and confirmatory studies are necessary before clinical application, the data suggest that HER3 and CD73 may play important roles in the biological response to cetuximab

    Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii

    Get PDF
    Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    RON5 is critical for organization and function of the Toxoplasma moving junction complex

    Get PDF
    Apicomplexans facilitate host cell invasion through formation of a tight-junction interface between parasite and host plasma membranes called the moving junction (MJ). A complex of the rhoptry neck proteins RONs 2/4/5/8 localize to the MJ during invasion where they are believed to provide a stable anchoring point for host penetration. During the initiation of invasion, the preformed MJ RON complex is injected into the host cell where RON2 spans the host plasma membrane while RONs 4/5/8 localize to its cytosolic face. While much attention has been directed toward an AMA1-RON2 interaction supposed to occur outside the cell, little is known about the functions of the MJ RONs positioned inside the host cell. Here we provide a detailed analysis of RON5 to resolve outstanding questions about MJ complex organization, assembly and function during invasion. Using a conditional knockdown approach, we show loss of RON5 results in complete degradation of RON2 and mistargeting of RON4 within the parasite secretory pathway, demonstrating that RON5 plays a key role in organization of the MJ RON complex. While RON8 is unaffected by knockdown of RON5, these parasites are unable to invade new host cells, providing the first genetic demonstration that RON5 plays a critical role in host cell penetration. Although invasion is not required for injection of rhoptry effectors into the host cytosol, parasites lacking RON5 also fail to form evacuoles suggesting an intact MJ complex is a prerequisite for secretion of rhoptry bulb contents. Additionally, while the MJ has been suggested to function in egress, disruption of the MJ complex by RON5 depletion does not impact this process. Finally, functional complementation of our conditional RON5 mutant reveals that while proteolytic separation of RON5 N- and C-terminal fragments is dispensable, a portion of the C-terminal domain is critical for RON2 stability and function in invasion
    corecore