8,151 research outputs found

    Patient-Reported Side Effects of Intradetrusor Botulinum Toxin Type A for Idiopathic Overactive Bladder Syndrome

    Get PDF
    Objective: The aim of the study was a prospective assessment of patient-reported side effects in an open-label study after intradetrusor botulinum toxin injections for idiopathic overactive bladder (OAB). Patients and Methods: Botulinum toxin A injection was performed in 56 patients with idiopathic OAB. Patients were followed up for 6 months concerning side effects and patients' satisfaction. Results: Different types of side effects were assessed such as dry mouth (19.6%), arm weakness (8.9%), eyelid weakness (8.9%), leg weakness (7.1%), torso weakness (5.4%), impaired vision (5.4%) and dysphagia (5.4%). In all cases, symptoms were mild and transient. Urological complications such as gross hematuria (17.9%), acute urinary retention (8.9%) and acute urinary tract infection (7.1%) were noticed. In all cases, acute urinary retention was transient and treated with temporary intermittent self-catheterization. There was no statistically significant correlation between dosage and observed side effects. Patients' satisfaction rate was high (71.4%). Conclusion: Intradetrusor injection of botulinum toxin was associated with a high rate of neurourological side effects. In general, side effects were transient, mild and did not require special treatment. Copyright (C) 2010 S. Karger AG, Base

    Eaten alive: cannibalism is enhanced by parasites

    Get PDF
    Cannibalism is ubiquitous in nature and especially pervasive in consumers with stage-specific resource utilization in resource-limited environments. Cannibalism is thus influential in the structure and functioning of biological communities. Parasites are also pervasive in nature and, we hypothesize, might affect cannibalism since infection can alter host foraging behaviour. We investigated the effects of a common parasite, the microsporidian Pleistophora mulleri, on the cannibalism rate of its host, the freshwater amphipod Gammarus duebeni celticus. Parasitic infection increased the rate of cannibalism by adults towards uninfected juvenile conspecifics, as measured by adult functional responses, that is, the rate of resource uptake as a function of resource density. This may reflect the increased metabolic requirements of the host as driven by the parasite. Furthermore, when presented with a choice, uninfected adults preferred to cannibalize uninfected rather than infected juvenile conspecifics, probably reflecting selection pressure to avoid the risk of parasite acquisition. By contrast, infected adults were indiscriminate with respect to infection status of their victims, probably owing to metabolic costs of infection and the lack of risk as the cannibals were already infected. Thus parasitism, by enhancing cannibalism rates, may have previously unrecognized effects on stage structure and population dynamics for cannibalistic species and may also act as a selective pressure leading to changes in resource use

    Designing hollow nano gold golf balls.

    Get PDF
    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure

    Comparison of the Near-Threshold Production of eta- and K-Mesons in Proton-Proton Collisions

    Get PDF
    The pp -> pp eta and pp -> pLambda K^+ reactions near threshold are dominated by the first and second S_11 resonance respectively. It is shown that a one-pion-exchange model exciting these isobars reproduces well the ratio of the production cross sections. The consequences for this and other channels are discussed.Comment: 10 pages, LaTeX2e, 1 eps-figur

    Small Molecule Glycomimetics Inhibit Vascular Calcification via c-Met/Notch3/HES1 Signalling

    Get PDF
    © Copyright by the Author(s). Published by Cell Physiol Biochem Press. BACKGROUND/AIMS: Vascular calcification represents a huge clinical problem contributing to adverse cardiovascular events, with no effective treatment currently available. Upregulation of hepatocyte growth factor has been linked with vascular calcification, and thus, represent a potential target in the development of a novel therapeutic strategy. Glycomimetics have been shown to interrupt HGF-receptor signalling, therefore this study investigated the effect of novel glycomimetics on osteogenic signalling and vascular calcification in vitro. METHODS: Primary human vascular smooth muscle cells (HVSMCs) were induced by β-glycerophosphate (β-GP) and treated with 4 glycomimetic compounds (C1-C4). The effect of β-GP and C1-C4 on alkaline phosphatase (ALP), osteogenic markers and c-Met/Notch3/HES1 signalling was determined using colorimetric assays, qRT-PCR and western blotting respectively. RESULTS: C1-C4 significantly attenuated β-GP-induced calcification, as shown by Alizarin Red S staining and calcium content by day 14. In addition, C1-C4 reduced ALP activity and prevented upregulation of the osteogenic markers, BMP-2, Runx2, Msx2 and OPN. Furthermore, β-GP increased c-Met phosphorylation at day 21, an effect ameliorated by C2 and C4 and the c-Met inhibitor, crizotinib. We next interrogated the effects of the Notch inhibitor DAPT and confirmed an inhibition of β-GP up-regulated Notch3 protein by C2, DAPT and crizotinib compared to controls. Hes-1 protein upregulation by β-GP, was also significantly downregulated by C2 and DAPT. GOLD docking analysis identified a potential binding interaction of C1-C4 to HGF which will be investigated further. CONCLUSION: These findings demonstrate that glycomimetics have potent anti-calcification properties acting via HGF/c-Met and Notch signalling

    Fluid Particle Accelerations in Fully Developed Turbulence

    Full text link
    The motion of fluid particles as they are pushed along erratic trajectories by fluctuating pressure gradients is fundamental to transport and mixing in turbulence. It is essential in cloud formation and atmospheric transport, processes in stirred chemical reactors and combustion systems, and in the industrial production of nanoparticles. The perspective of particle trajectories has been used successfully to describe mixing and transport in turbulence, but issues of fundamental importance remain unresolved. One such issue is the Heisenberg-Yaglom prediction of fluid particle accelerations, based on the 1941 scaling theory of Kolmogorov (K41). Here we report acceleration measurements using a detector adapted from high-energy physics to track particles in a laboratory water flow at Reynolds numbers up to 63,000. We find that universal K41 scaling of the acceleration variance is attained at high Reynolds numbers. Our data show strong intermittency---particles are observed with accelerations of up to 1,500 times the acceleration of gravity (40 times the root mean square value). Finally, we find that accelerations manifest the anisotropy of the large scale flow at all Reynolds numbers studied.Comment: 7 pages, 4 figure

    Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Get PDF
    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction

    Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code

    Get PDF
    A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code (QECC) that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information technologies, it is believed that QECC will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the first experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Whereas {\it errors} translate, in an information theoretic language, the noise affecting a transmission line, {\it erasures} correspond to the in-line probabilistic loss of photons. Our quantum code protects a four-mode entangled mesoscopic state of light against erasures, and its associated encoding and decoding operations only require linear optics and Gaussian resources. Since in-line attenuation is generally the strongest limitation to quantum communication, much more than noise, such an erasure-correcting code provides a new tool for establishing quantum optical coherence over longer distances. We investigate two approaches for circumventing in-line losses using this code, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means.Comment: 5 pages, 4 figure

    XMMSL2 J144605.0+685735: a slow tidal disruption event

    Get PDF
    Aims. We investigate the evolution of X-ray selected tidal disruption events. Methods. New events are found in near real-time data from XMM-Newton slews, and are monitored by multi-wavelength facilities. Results. In August 2016, X-ray emission was detected from the galaxy XMMSL2 J144605.0+685735 (also known as 2MASX 14460522+6857311), that was 20 times higher than an upper limit from 25 years earlier. The X-ray flux was flat for ∼100 days and then fell by a factor of 100 over the following 500 days. The UV flux was stable for the first 400 days before fading by a magnitude, while the optical (U,B,V) bands were roughly constant for 850 days. Optically, the galaxy appears to be quiescent, at a distance of 127 ± 4 Mpc (z = 0.029 ± 0.001) with a spectrum consisting of a young stellar population of 1–5 Gyr in age, an older population, and a total stellar mass of ∼6 × 109 M⊙. The bolometric luminosity peaked at Lbol ∼ 1043 ergs s−1 with an X-ray spectrum that may be modelled by a power law of Γ ∼ 2.6 or Comptonisation of a low-temperature thermal component by thermal electrons. We consider a tidal disruption event to be the most likely cause of the flare. Radio emission was absent in this event down to < 10 μJy, which limits the total energy of a hypothetical off-axis jet to E <  5 × 1050 ergs. The independent behaviour of the optical, UV, and X-ray light curves challenges models where the UV emission is produced by reprocessing of thermal nuclear emission or by stream-stream collisions. We suggest that the observed UV emission may have been produced from a truncated accretion disc and the X-rays from Compton upscattering of these disc photons
    • …
    corecore