92 research outputs found
Metallization of Fiber Reinforced Composite by Surface Functionalization and Cold Spray Deposition
n/
Perioperative Minimal Induction Therapy: A Further Step toward More Effective Immunosuppression in Transplantation
Dual induction with low doses of rabbit anti-human thymoglobulin (RATG) and basiliximab effectively and safely prevented allograft rejection in high-risk renal transplant recipients. To assess whether treatment timing affects efficacy and tolerability, in this single-center, matched-cohort study, we compared posttransplant outcomes in 25 patients and 50 gender-, age-, and treatment-matched reference patients induced with the same course of 7 daily RATG infusions (0.5 mg/kg/day) started before or after engraftment, respectively. All subjects received basiliximab (20 mg) before and 4 days after transplantation, withdrew steroids within 6 days after surgery, and were maintained on steroid-free immunosuppression with cyclosporine and mycophenolate mofetil or azathioprine. Over 12 months after transplant, 1 patient (4%) and 13 reference patients (26%) had acute rejection episodes. One patient and 5 reference-patients required dialysis therapy because of delayed graft function. In all patients circulating CD4+ and CD8+ T lymphocytes were fully depleted before engraftment. Both treatments were well tolerated. In kidney transplantation, perioperative RATG infusion enhances the protective effect of low-dose RATG and basiliximab induction against graft rejection and delayed function, possibly because of more effective inhibition of early interactions between circulating T cells and graft antigens
Paracrine effects of transplanted myoblasts and relaxin on post-infarction heart remodeling
In the post-infarcted heart, grafting of precursor cells may partially restore heart function but the improvement is modest and the mechanisms involved remain to be elucidated. Here, we explored this issue by transplanting C2C12 myoblasts, genetically engineered to express enhanced green fluorescent protein (eGFP) or eGFP and the cardiotropic hormone relaxin (RLX) through coronary venous route to swine with experimental chronic myocardial infarction. The rationale was to deliver constant, biologically effective levels of RLX at the site of cell engraftment. One month after engraftment, histological analysis showed that C2C12 myoblasts selectively settled in the ischaemic scar and were located around blood vessels showing an activated endothelium (ICAM-1-,VCAM-positive). C2C12 myoblasts did not trans-differentiate towards a cardiac phenotype, but did induce extracellular matrix remodelling by the secretion of matrix metalloproteases (MMP) and increase microvessel density through the expression of vascular endothelial growth factor (VEGF). Relaxin-producing C2C12 myoblasts displayed greater efficacy to engraft the post-ischaemic scar and to induce extracellular matrix re-modelling and angiogenesis as compared with the control cells. By echocardio-graphy, C2C12-engrafted swine showed improved heart contractility compared with the ungrafted controls, especially those producing RLX. We suggest that the beneficial effects of myoblast grafting on cardiac function are primarily dependent on the paracrine effects of transplanted cells on extracellular matrix remodelling and vascularization. The combined treatment with myoblast transplantation and local RLX production may be helpful in preventing deleterious cardiac remodelling and may hold therapeutic possibility for post-infarcted patients
Elevated serum Neurofilament Light chain (NfL) as a potential biomarker of neurological involvement in Myotonic Dystrophy type 1 (DM1)
Background Cognitive and behavioural symptoms due to involvement of the central nervous system (CNS) are among the main clinical manifestations of Myotonic Dystrophy type 1 (DM1). Such symptoms affect patients' quality of life and disease awareness, impacting on disease prognosis by reducing compliance to medical treatments. Therefore, CNS is a key therapeutic target in DM1. Deeper knowledge of DM1 pathogenesis is prompting development of potential disease-modifying therapies: as DM1 is a rare, multisystem and slowly progressive disease, there is need of sensitive, tissue-specific prognostic and monitoring biomarkers in view of forthcoming clinical trials. Circulating Neurofilament light chain (NfL) levels have been recognized as a sensitive prognostic and monitoring biomarker of neuroaxonal damage in various CNS disorders. Methods We performed a cross-sectional study in a cohort of 40 adult DM1 patients, testing if serum NfL might be a potential biomarker of CNS involvement also in DM1. Moreover, we collected cognitive data, brain MRI, and other DM1-related diagnostic findings for correlation studies. Results Mean serum NfL levels resulted significantly higher in DM1 (25.32 +/- 28.12 pg/ml) vs 22 age-matched healthy controls (6.235 +/- 0.4809 pg/ml). Their levels positively correlated with age, and with one cognitive test (Rey's Auditory Verbal learning task). No correlations were found either with other cognitive data, or diagnostic parameters in the DM1 cohort. Conclusions Our findings support serum NfL as a potential biomarker of CNS damage in DM1, which deserves further evaluation on larger cross-sectional and longitudinal studies to test its ability in assessing brain disease severity and/or progression
Application of a Clinical Workflow May Lead to Increased Diagnostic Precision in Hereditary Spastic Paraplegias and Cerebellar Ataxias: A Single Center Experience
The molecular characterization of Hereditary Spastic Paraplegias (HSP) and inherited
cerebellar ataxias (CA) is challenged by their clinical and molecular heterogeneity. The recent
application of Next Generation Sequencing (NGS) technologies is increasing the diagnostic rate,
which can be influenced by patients\u2019 selection. To assess if a clinical diagnosis of CA/HSP received
in a third-level reference center might impact the molecular diagnostic yield, we retrospectively
evaluated the molecular diagnostic rate reached in our center on 192 unrelated families (90 HSP and
102 CA) (i) before NGS and (ii) with the use of NGS gene panels. Overall, 46.3% of families received a
genetic diagnosis by first-tier individual gene screening: 43.3% HSP and 50% spinocerebellar ataxias
(SCA). The diagnostic rate was 56.7% in AD-HSP, 55.5% in AR-HSP, and 21.2% in sporadic HSP. On
the other hand, 75% AD-, 52% AR- and 33% sporadic CA were diagnosed. So far, 32 patients (24
CA and 8 HSP) were further assessed by NGS gene panels, and 34.4% were diagnosed, including
29.2% CA and 50% HSP patients. Eleven novel gene variants classified as (likely) pathogenic were
identified. Our results support the role of experienced clinicians in the diagnostic assessment and the
clinical research of CA and HSP even in the next generation era
A Machine-Learning Approach to Target Clinical and Biological Features Associated with Sarcopenia: Findings from Northern and Southern Italian Aging Populations
Epidemiological and public health resonance of sarcopenia in late life requires further research to identify better clinical markers useful for seeking proper care strategies in preventive medicine settings. Using a machine-learning approach, a search for clinical and fluid markers most associated with sarcopenia was carried out across older populations from northern and southern Italy. A dataset of adults >65 years of age (n = 1971) made up of clinical records and fluid markers from either a clinical-based subset from northern Italy (Pavia) and a population-based subset from southern Italy (Apulia) was employed (n = 1312 and n = 659, respectively). Body composition data obtained by dual-energy X-ray absorptiometry (DXA) were used for the diagnosis of sarcopenia, given by the presence of either low muscle mass (i.e., an SMI 2 for males or 2 for females) and of low muscle strength (i.e., an HGS < 27 kg for males or <16 kg for females) or low physical performance (i.e., an SPPB ≤ 8), according to the EWGSOP2 panel guidelines. A machine-learning feature-selection approach, the random forest (RF), was used to identify the most predictive features of sarcopenia in the whole dataset, considering every possible interaction among variables and taking into account nonlinear relationships that classical models could not evaluate. Then, a logistic regression was performed for comparative purposes. Leading variables of association to sarcopenia overlapped in the two population subsets and included SMI, HGS, FFM of legs and arms, and sex. Using parametric and nonparametric whole-sample analysis to investigate the clinical variables and biological markers most associated with sarcopenia, we found that albumin, CRP, folate, and age ranked high according to RF selection, while sex, folate, and vitamin D were the most relevant according to logistics. Albumin, CRP, vitamin D, and serum folate should not be neglected in screening for sarcopenia in the aging population. Better preventive medicine settings in geriatrics are urgently needed to lessen the impact of sarcopenia on the general health, quality of life, and medical care delivery of the aging population
Nanostructured Poly-l-lactide and Polyglycerol Adipate Carriers for the Encapsulation of Usnic Acid: A Promising Approach for Hepatoprotection
The present study investigates the utilization of nanoparticles based on poly-l-lactide (PLLA) and polyglycerol adipate (PGA), alone and blended, for the encapsulation of usnic acid (UA), a potent natural compound with various therapeutic properties including antimicrobial and anticancer activities. The development of these carriers offers an innovative approach to overcome the challenges associated with usnic acid’s limited aqueous solubility, bioavailability, and hepatotoxicity. The nanosystems were characterized according to their physicochemical properties (among others, size, zeta potential, thermal properties), apparent aqueous solubility, and in vitro cytotoxicity. Interestingly, the nanocarrier obtained with the PLLA-PGA 50/50 weight ratio blend showed both the lowest size and the highest UA apparent solubility as well as the ability to decrease UA cytotoxicity towards human hepatocytes (HepG2 cells). This research opens new avenues for the effective utilization of these highly degradable and biocompatible PLLA-PGA blends as nanocarriers for reducing the cytotoxicity of usnic acid
Muscle magnetic resonance imaging in myotonic dystrophy type 1 (DM1) : Refining muscle involvement and implications for clinical trials
Only a few studies have reported muscle imaging data on small cohorts of patients with myotonic dystrophy type 1 (DM1). We aimed to investigate the muscle involvement in a large cohort of patients in order to refine the pattern of muscle involvement, to better understand the pathophysiological mechanisms of muscle weakness, and to identify potential imaging biomarkers for disease activity and severity. One hundred and thirty-four DM1 patients underwent a cross-sectional muscle magnetic resonance imaging (MRI) study. Short tau inversion recovery (STIR) and T1 sequences in the lower and upper body were analyzed. Fat replacement, muscle atrophy and STIR positivity were evaluated using three different scales. Correlations between MRI scores, clinical features and genetic background were investigated. The most frequent pattern of muscle involvement in T1 consisted of fat replacement of the tongue, sternocleidomastoideus, paraspinalis, gluteus minimus, distal quadriceps and gastrocnemius medialis. Degree of fat replacement at MRI correlated with clinical severity and disease duration, but not with CTG expansion. Fat replacement was also detected in milder/asymptomatic patients. More than 80% of patients had STIR-positive signals in muscles. Most DM1 patients also showed a variable degree of muscle atrophy regardless of MRI signs of fat replacement. A subset of patients (20%) showed a 'marbled' muscle appearance. Muscle MRI is a sensitive biomarker of disease severity alsofor the milder spectrum of disease. STIR hyperintensity seems to precede fat replacement in T1. Beyond fat replacement, STIR positivity, muscle atrophy and a 'marbled' appearance suggest further mechanisms of muscle wasting and weakness in DM1, representing additional outcome measures and therapeutic targets for forthcoming clinical trials. We refined the pattern of muscle involvement in DM1 by upper and lower body muscle magnetic resonance imaging (MRI), identifying the most frequent pattern of fat replacement and confirming that muscle MRI is a sensitive biomarker of disease burden in DM1. We also observed: STIR-positive muscles in 80% of patients preceding fat replacement, muscle atrophy in muscles unreplaced by fat, and progeroid muscle appearance supporting a premature muscle senescence. Our findings provide novel insights into the pathophysiological mechanisms of muscle wasting and weakness in DM1, and could represent additional outcome measures and therapeutic targets for forthcoming clinical trials
Endosperm structure and Glycemic Index of Japonica Italian rice varieties
Introduction: Given that rice serves as a crucial staple food for a significant portion of the global population and with the increasing number of individuals being diagnosed with diabetes, a primary objective in genetic improvement is to identify and cultivate low Glycemic Index (GI) varieties. This must be done while ensuring the preservation of grain quality. Methods: 25 Italian rice genotypes were characterized calculating their GI "in vivo" and, together with other 29 Italian and non-Italian genotypes they were studied to evaluate the grain inner structure through Field Emission Scanning Electron Microscopy (FESEM) technique. Using an ad-hoc developed algorithm, morphological features were extracted from the FESEM images, to be then inspected by means of multivariate data analysis methods. Results and discussion: Large variability was observed in GI values (49 to 92 with respect to glucose), as well as in endosperm morphological features. According to the percentage of porosity is possible to distinguish approximately among rice varieties having a crystalline grain ( 5%), and a third group having intermediate characteristics. Waxy rice varieties were not united by a certain porosity level, but they shared a low starch granules eccentricity. With reference to morphological features, rice varieties with low GI (<55) seem to be characterized by large starch granules and low porosity values. Our data testify the wide variability of Italian rice cultivation giving interesting information for future breeding programs, finding that the structure of the endosperm can be regarded as a specific characteristic of each variety
- …