207 research outputs found

    Transfection of the mutant MYH9 cDNA reproduces the most typical cellular phenotype of MYH9-related disease in different cell lines

    Get PDF
    ABSTRACT: BACKGROUND: Heterozygous mutations of MYH9, encoding the Non-Muscular Myosin Heavy Chain-IIA (NMMHC-IIA), cause a complex disorder named MYH9-related disease, characterized by a combination of different phenotypic features. At birth, patients present platelet macrocytosis, thrombocytopenia and leukocyte inclusions containing NMMHC-IIA. Moreover, later in life some of them develop the additional features of sensorineural hearing loss, cataracts and/or glomerulonephritis that sometimes leads to end stage renal failure. RESULTS: To clarify the mechanism by which the mutant NMMHC-IIA could cause phenotypic anomalies at the cellular level, we examined the effect of transfection of the full-length mutated D1424H MYH9 cDNAs. We have observed, by confocal microscopy, abnormal distribution of the protein and formation of rod-like aggregates reminiscent of the leukocyte inclusions found in patients. Co-transfection of differently labeled wild-type and mutant full-length cDNAs showed the simultaneous presence of both forms of the protein in the intracellular aggregates. CONCLUSION: These findings suggest that the NMMHC-IIA mutated in position 1424 is able to interact with the WT form in living cells, despite part of the mutant protein precipitates in non-functional aggregates. Transfection of the entire WT or mutant MYH9 in cell lines represents a powerful experimental model to investigate consequences of MYH9 mutations

    Ophthalmic complications of Lemierre syndrome

    Full text link
    PURPOSE: Lemierre syndrome is a life-threatening condition characterized by head/neck bacterial infection, local suppurative thrombophlebitis and septic embolic complications in a range of sites of distant organs. No prior study focused on the course and characteristics of ophthalmic complications of Lemierre syndrome. METHODS: We analysed data of 27 patients with ophthalmic complications from a large cohort of 712 cases with Lemierre syndrome reported globally between 2000 and 2017. We focused on initial manifestations, early (in-hospital) course and long-term ophthalmic deficits at the time of hospital discharge or during postdischarge follow-up. The study protocol was registered in the International Prospective Register of Systematic Reviews PROSPERO (CRD42016052572). RESULTS: Nine (33%) patients were women; the median age was 20 (Q1-Q3: 15-33) years. Fusobacterium spp. was involved in 56% of cases. The most prevalent initial manifestations were decreased vision (35%) and periocular oedema (38%), followed by impaired eye movements/nerve palsy (28%) and proptosis (28%). Venous involvement, notably cerebral vein thrombosis (70%) and ophthalmic vein thrombosis (55%), explained the symptomatology in most cases. Septic embolism (7%), orbital abscesses (2%) and carotid stenosis (14%) were also present. Ophthalmic sequelae were reported in 9 (33%) patients, often consisting of blindness or reduced visual acuity, and nerve paralysis/paresis. CONCLUSION: Ophthalmic complications represent a severe manifestation of Lemierre syndrome, often reflecting an underlying cerebral vein thrombosis. Visual acuity loss and long-term severe complications are frequent. We call for an interdisciplinary approach to the management of patients with Lemierre syndrome and the routine involvement of ophthalmologists

    5′UTR point substitutions and N-terminal truncating mutations of ANKRD26 in acute myeloid leukemia

    Get PDF
    Thrombocytopenia 2 (THC2) is an inherited disorder caused by monoallelic single nucleotide substitutions in the 5'UTR of the ANKRD26 gene. Patients have thrombocytopenia and increased risk of myeloid malignancies, in particular, acute myeloid leukemia (AML). Given the association of variants in the ANKRD26 5'UTR with myeloid neoplasms, we investigated whether, and to what extent, mutations in this region contribute to apparently sporadic AML. To this end, we studied 250 consecutive, non-familial, adult AML patients and screened the first exon of ANKRD26 including the 5'UTR. We found variants in four patients. One patient had the c.-125T>G substitution in the 5'UTR, while three patients carried two different variants in the 5' end of the ANKRD26 coding region (c.3G>A or c.105C>G). Review of medical history showed that the patient carrying the c.-125T>G was actually affected by typical but unrecognized THC2, highlighting that some apparently sporadic AML cases represent the evolution of a well-characterized familial predisposition disorder. As regards the c.3G>A and the c.105C>G, we found that both variants result in the synthesis of N-terminal truncated ANKRD26 isoforms, which are stable and functional in cells, in particular, have a strong ability to activate the MAPK/ERK signaling pathway. Moreover, investigation of one patient with the c.3G>A showed that mutation was associated with strong ANKRD26 overexpression in vivo, which is the proposed mechanism for predisposition to AML in THC2 patients. These data provide evidence that N-terminal ANKRD26 truncating mutations play a potential pathogenetic role in AML. Recognition of AML patients with germline ANKRD26 pathogenetic variants is mandatory for selection of donors for bone marrow transplantation

    Dysregulation of oncogenic factors by GFI1B p32: investigation of a novel GFI1B germline mutation

    Get PDF
    GFI1B is a transcription factor essential for the regulation of erythropoiesis and megakaryopoiesis, and pathogenic variants have been associated with thrombocytopenia and bleeding. Analysing thrombocytopenic families by whole exome sequencing, we identified a novel GFI1B variant (c.648+5G>A), which causes exon 9 skipping and overexpression of a shorter p32 isoform. We report the clinical data of our patients and critically review the phenotype observed in individuals with different GFI1B variants leading to the same effect on the p32 expression. Since p32 is increased in acute and chronic leukemia cells, we tested the expression level of genes playing a role in various type of cancers, including hematological tumors and found that they are significantly dysregulated, suggesting a potential role for GFI1B in carcinogenesis regulation. Increasing the number of individuals with GFI1B variants will allow us to better characterize this rare disease and determine whether it is associated with an increased risk of developing malignancies

    MYH9-related disease: Five novel mutations expanding the spectrum of causative mutations and confirming genotype/phenotype correlations

    Get PDF
    MYH9-related disease (MYH9-RD) is a rare autosomal dominant syndromic disorder caused by mutations in MYH9, the gene encoding for the heavy chain of non-muscle myosin IIA (myosin-9). MYH9-RD is characterized by congenital macrothrombocytopenia and typical inclusion bodies in neutrophils associated with a variable risk of developing sensorineural deafness, presenile cataract, and/or progressive nephropathy. The spectrum of mutations responsible for MYH9-RD is limited. We report five families, each with a novel MYH9 mutation. Two mutations, p.Val34Gly and p.Arg702Ser, affect the motor domain of myosin-9, whereas the other three, p.Met847_Glu853dup, p.Lys1048_Glu1054del, and p.Asp1447Tyr, hit the coiled-coil tail domain of the protein. The motor domain mutations were associated with more severe clinical phenotypes than those in the tail domain.Fil: de Rocco, Daniela. Istituto di Ricovero e Cura a Carattere Scientifico "Burlo Garofolo"; ItaliaFil: Zieger, Barbara. University of Freiburg; AlemaniaFil: Platokouki, Helen. “Aghia Sophia” Children; GreciaFil: Heller, Paula Graciela. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Investigaciones Medicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Pastore, Annalisa. National Institute for Medical Research; Reino UnidoFil: Bottega, Roberta. Istituto di Ricovero e Cura a Carattere Scientifico "Burlo Garofolo"; ItaliaFil: Noris, Patrizia. Istituto di Ricovero e Cura a Carattere Scientifico "Burlo Garofolo"; Italia. University of Pavia; ItaliaFil: Barozzi, Serena. Istituto di Ricovero e Cura a Carattere Scientifico "Burlo Garofolo"; Italia. University of Pavia; ItaliaFil: Glembotsky, Ana Claudia. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Investigaciones Medicas; ArgentinaFil: Pergantou, Helen. “Aghia Sophia” Children; GreciaFil: Balduini, Carlo L.. Istituto di Ricovero e Cura a Carattere Scientifico "Burlo Garofolo"; Italia. University of Pavia; ItaliaFil: Savoia, Anna. Istituto di Ricovero e Cura a Carattere Scientifico "Burlo Garofolo"; Italia. Universita Degli Studi Di Trieste; ItaliaFil: Pecci, Alessandro. Istituto di Ricovero e Cura a Carattere Scientifico "Burlo Garofolo"; Italia. University of Pavia; Itali

    International collaboration as a tool for diagnosis of patients with inherited thrombocytopenia in the setting of a developing country

    Get PDF
    Inherited thrombocytopenias (ITs) are heterogeneous genetic disorders that frequently represent a diagnostic challenge. The requirement of highly specialized tests for diagnosis represents a particular problem in resourcelimited settings. To overcome this difficulty, we applied a diagnostic algorithm and developed a collaboration program with a specialized international center in order to increase the diagnostic yield in a cohort of patients in Argentina. Methods: Based on the algorithm, initial evaluation included collection of clinical data, platelet size, blood smear examination and platelet aggregation tests. Confirmatory tests were performed according to diagnostic suspicion, which included platelet glycoprotein expression, immunofluorescence for myosin- 9 in granulocytes and platelet thrombospondin-1 and molecular screening of candidate genes. Results: Thirty-one patients from 14 pedigrees were included; their median age was 32 (4?72) years and platelet count 72 (4?147) · 109 L)1. Autosomal dominant inheritance was found in nine (64%) pedigrees; 10 (71%) had large platelets and nine (29%) patients presented with syndromic forms. A definitive diagnosis was made in 10 of 14 pedigrees and comprised MYH9-related disease in four, while classic and monoallelic Bernard?Soulier syndrome, gray platelet syndrome, X-linked thrombocytopenia, thrombocytopenia 2 (ANKRD26 mutation) and familial platelet disorder with predisposition to acute myelogenous leukemia were diagnosed in one pedigree each. Conclusions: Adoption of an established diagnostic algorithm and collaboration with an expert referral center proved useful for diagnosis of IT patients in the setting of a developing country. This initiative may serve as a model to develop international networks with the goal of improving diagnosis and care of patients with these rare diseases.Fil: Glembotsky, Ana Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Marta, Rosana Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Pecci, Alessandro. Universita Degli Studi Di Pavia; ItaliaFil: de Rocco, Daniela. Institute for Maternal and Child Health – IRCCS "Burlo Garofolo"; ItaliaFil: Gnan, Chiara. Institute for Maternal and Child Health – IRCCS "Burlo Garofolo"; ItaliaFil: Espasandin, Yesica Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Goette, Nora Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Negro, F.. Instituto Médico Sagrado Corazón; ArgentinaFil: Noris, Patrizia. Universita Degli Studi Di Pavia; ItaliaFil: Savoia, Anna. Institute for Maternal and Child Health – IRCCS "Burlo Garofolo"; Italia. Università degli Studi di Trieste; ItaliaFil: Balduini, C. L.. Universita Degli Studi Di Pavia; ItaliaFil: Molinas, Felisa Concepción. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Heller, Paula Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentin

    The EHA Research Roadmap:Platelet Disorders

    Get PDF
    In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1 to 2 section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including 11 sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The 11 EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cellbased Immune Therapies; and Gene Therapy

    May-Hegglin Anomaly, Sebastian Syndrome, Fechtner Syndrome, and Epstein Syndrome Are not Distinct Entities but Represent a Variable Expression of a Single Illness

    Get PDF
    May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are autosomal dominant macrothrombocytopenias distinguished by different combinations of clinical and laboratory signs, such as sensorineural hearing loss, cataract, nephritis, and polymorphonuclear Döhle-like bodies. Mutations in the MYH9 gene encoding for the nonmuscle myosin heavy chain IIA (NMMHC-IIA) have been identified in all these syndromes. To understand the role of the MYH9 mutations, we report the molecular defects in 12 new cases, which together with our previous works represent a cohort of 19 families. Since no genotype-phenotype correlation was established, we performed an accurate clinical and biochemical re-evaluation of patients. In addition to macrothrombocytopenia, an abnormal distribution of NMMHC-IIA within leukocytes was observed in all individuals, including those without Döhle-like bodies. Selective, high-tone hearing deficiency and cataract was diagnosed in 83% and 23%, respectively, of patients initially referred as having May-Hegglin anomaly or Sebastian syndrome. Kidney abnormalities, such as hematuria and proteinuria, affected not only patients referred as Fechtner syndrome and Epstein syndrome but also those referred as May-Hegglin anomaly and Sebastian syndrome. These findings allowed us to conclude that May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but rather a single disorder with a continuous clinical spectrum varying from mild macrothrombocytopenia with leukocyte inclusions to a severe form complicated by hearing loss, cataracts, and renal failure. For this new nosologic entity, we propose the term "MHY9-related disease," which better interprets the recent knowledge in this field and identifies all patients at risk of developing renal, hearing, or visual defects

    High familial burden of cancer correlates with improved outcome from immunotherapy in patients with NSCLC independent of somatic DNA damage response gene status

    Get PDF
    Family history of cancer (FHC) is a hallmark of cancer risk and an independent predictor of outcome, albeit with uncertain biologic foundations. We previously showed that FHC-high patients experienced prolonged overall (OS) and progression-free survival (PFS) following PD-1/PD-L1 checkpoint inhibitors. To validate our findings in patients with NSCLC, we evaluated two multicenter cohorts of patients with metastatic NSCLC receiving either first-line pembrolizumab or chemotherapy. From each cohort, 607 patients were randomly case-control matched accounting for FHC, age, performance status, and disease burden. Compared to FHC-low/negative, FHC-high patients experienced longer OS (HR 0.67 [95% CI 0.46-0.95], p\u2009=\u20090.0281), PFS (HR 0.65 [95% CI 0.48-0.89]; p\u2009=\u20090.0074) and higher disease control rates (DCR, 86.4% vs 67.5%, p\u2009=\u20090.0096), within the pembrolizumab cohort. No significant associations were found between FHC and OS/PFS/DCR within the chemotherapy cohort. We explored the association between FHC and somatic DNA damage response (DDR) gene alterations as underlying mechanism to our findings in a parallel cohort of 118 NSCLC, 16.9% of whom were FHC-high. The prevalence of\u2009 65\u20091 somatic DDR gene mutation was 20% and 24.5% (p\u2009=\u20090.6684) in FHC-high vs. FHC-low/negative, with no differences in tumor mutational burden (6.0 vs. 7.6 Mut/Mb, p\u2009=\u20090.6018) and tumor cell PD-L1 expression. FHC-high status identifies NSCLC patients with improved outcomes from pembrolizumab but not chemotherapy, independent of somatic DDR gene status. Prospective studies evaluating FHC alongside germline genetic testing are warranted
    corecore