71 research outputs found

    Thermophotovoltaic conversion efficiency measurement at high view factors

    Full text link
    A standardized method for measuring thermophotovoltaic (TPV) efficiency has not been yet established, which makes the reported results difficult to compare. Besides, most of the TPV efficiencies reported to date have been obtained using small view factors, i.e., large cell-to-emitter distances, so the impact of the series resistance is usually underestimated, and the optical cavity effects, i.e., the multiple reflections taking place between the emitter and the cell, are not accounted for experimentally. In this work, we present an experimental setup able to measure the TPV efficiency under high view factors (up to 0.98), by using small emitter-to-cell distances (< 1 mm). This allows a more accurate direct measurement of the TPV efficiency at higher power densities than previous works. As a result, a TPV efficiency of 26.4+-0.1 % and a power density of 4.3+-0.8 W/cm2 have been obtained for an InGaAs TPV cell with a back surface reflector irradiated by a graphite thermal emitter at 1592 C

    The Active Human Gut Microbiota Differs from the Total Microbiota

    Get PDF
    The human gut microbiota is considered one of the most fascinating reservoirs of microbial diversity hosting between 400 to 1000 bacterial species distributed among nine phyla with Firmicutes, Bacteroidetes and Actinobacteria representing around of the diversity. One of the most intriguing issues relates to understanding which microbial groups are active players in the maintenance of the microbiota homeostasis

    Microbial Succession in the Gut: Directional Trends of Taxonomic and Functional Change in a Birth Cohort of Spanish Infants

    Get PDF
    In spite of its major impact on life-long health, the process of microbial succession in the gut of infants remains poorly understood. Here, we analyze the patterns of taxonomic and functional change in the gut microbiota during the first year of life for a birth cohort of 13 infants. We detect that individual instances of gut colonization vary in the temporal dynamics of microbiota richness, diversity, and composition at both functional and taxonomic levels. Nevertheless, trends discernible in a majority of infants indicate that gut colonization occurs in two distinct phases of succession, separated by the introduction of solid foods to the diet. This change in resource availability causes a sharp decrease in the taxonomic richness of the microbiota due to the loss of rare taxa (p = 2.06e-9), although the number of core genera shared by all infants increases substantially. Moreover, although the gut microbial succession is not strictly deterministic, we detect an overarching directionality of change through time towards the taxonomic and functional composition of the maternal microbiota. Succession is however not complete by the one year mark, as significant differences remain between one-year-olds and their mothers in terms of taxonomic (p = 0.009) and functional (p = 0.004) microbiota composition, and in taxonomic richness (p = 2.76e-37) and diversity (p = 0.016). Our results also indicate that the taxonomic composition of the microbiota shapes its functional capacities. Therefore, the observed inter-individual variability in taxonomic composition during succession is not fully compensated by functional equivalence among bacterial genera and may have important physiological consequences. Finally, network analyses suggest that positive interactions among core genera during community assembly contribute to ensure their permanence within the gut, and highlight an expansion of complexity in the interactions network as the core of taxa shared by all infants grows following the introduction of solid foods. © 2014 VallÚs et al.This work has been supported by the Spanish MICINN (project SAF2009-13032-C02-02 and project CSD2009-00006 of the CONSOLIDER program). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer Reviewe

    OCT Y GLAUCOMA

    Get PDF
    El anĂĄlisis estructural de la capa de fibras nerviosas y del nervio Ăłptico que realiza la tomografĂ­a de coherencia Ăłptica es Ăștil como herramienta de capacidad diagnostica de la enfermedad glaucomatosa

    Valorisation of Persimmon and Blueberry By-Products to Obtain Functional Powders: in vitro Digestion and Fermentation by Gut Microbiota

    Full text link
    This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.jafc.0c02088[EN] Globalization of fruit and vegetable markets generates overproduction, surpluses, and potentially valuable residues. The valorization of these byproducts constitutes a challenge, to ensure sustainability and reintroduce them into the food chain. This work focuses on blueberry and persimmon residues, rich in polyphenols and carotenoids, to obtain powders with high added value to be used as ingredients in food formulation. These powders have been characterized, and the changes in the bioactive compounds in in vitro gastrointestinal digestion have been evaluated. The results indicated that the type of residue, the drying process, as well as the content and type of fiber determine the release of antioxidants during digestion. In vitro colonic fermentations were also performed, and it was observed that the characteristics of digested powders had an effect on the composition of the growing microbial community. Thus, carotenoids and anthocyanins maintain an interplay with microbiota that could be beneficial for human health.This study was supported by the Polisabio grant (P32) from Universitat Politecnica de Valencia and FISABIO and also financially supported by the Generalitat Valenciana (Project AICO/2017/049).Bas-Bellver, C.; AndrĂ©s, C.; SeguĂ­ Gil, L.; Barrera Puigdollers, C.; JimĂ©nez-HernĂĄndez, N.; Artacho, A.; Betoret Valls, N.... (2020). Valorisation of Persimmon and Blueberry By-Products to Obtain Functional Powders: in vitro Digestion and Fermentation by Gut Microbiota. Journal of Agricultural and Food Chemistry. 68(30):8080-8090. https://doi.org/10.1021/acs.jafc.0c02088S808080906830Scheel, C. (2016). Beyond sustainability. Transforming industrial zero-valued residues into increasing economic returns. Journal of Cleaner Production, 131, 376-386. doi:10.1016/j.jclepro.2016.05.018Jiang, H., Zhang, M., & Adhikari, B. (2013). Fruit and vegetable powders. Handbook of Food Powders, 532-552. doi:10.1533/9780857098672.3.532Durazzo, A. (s. f.). CHAPTER 3. Extractable and Non-extractable Polyphenols: an Overview. Non-extractable Polyphenols and Carotenoids, 37-45. doi:10.1039/9781788013208-00037Ortega, N., MaciĂ , A., Romero, M.-P., Reguant, J., & Motilva, M.-J. (2011). Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chemistry, 124(1), 65-71. doi:10.1016/j.foodchem.2010.05.105Chen, X., He, X., Zhang, B., Sun, L., Liang, Z., & Huang, Q. (2019). Wheat gluten protein inhibits α-amylase activity more strongly than a soy protein isolate based on kinetic analysis. International Journal of Biological Macromolecules, 129, 433-441. doi:10.1016/j.ijbiomac.2019.01.215(2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207-214. doi:10.1038/nature11234Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2017). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1-24. doi:10.1007/s00394-017-1445-8Fraga, C. G., Croft, K. D., Kennedy, D. O., & TomĂĄs-BarberĂĄn, F. A. (2019). The effects of polyphenols and other bioactives on human health. Food & Function, 10(2), 514-528. doi:10.1039/c8fo01997eMarhuenda-Muñoz, M., Laveriano-Santos, E. P., Tresserra-Rimbau, A., Lamuela-RaventĂłs, R. M., MartĂ­nez-HuĂ©lamo, M., & VallverdĂș-Queralt, A. (2019). Microbial Phenolic Metabolites: Which Molecules Actually Have an Effect on Human Health? Nutrients, 11(11), 2725. doi:10.3390/nu11112725Zhou, L., Xie, M., Yang, F., & Liu, J. (2020). Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota. LWT, 117, 108621. doi:10.1016/j.lwt.2019.108621Coronel, J., Pinos, I., & Amengual, J. (2019). ÎČ-carotene in Obesity Research: Technical Considerations and Current Status of the Field. Nutrients, 11(4), 842. doi:10.3390/nu11040842Levy, M., Thaiss, C. A., & Elinav, E. (2016). Metabolites: messengers between the microbiota and the immune system. Genes & Development, 30(14), 1589-1597. doi:10.1101/gad.284091.116Guo, B., Yang, B., Pang, X., Chen, T., Chen, F., & Cheng, K.-W. (2019). Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food & Function, 10(9), 5644-5655. doi:10.1039/c9fo01018aLyu, Y., Wu, L., Wang, F., Shen, X., & Lin, D. (2018). Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. Experimental Biology and Medicine, 243(7), 613-620. doi:10.1177/1535370218763760Castagnini, J. M., Betoret, N., Betoret, E., & Fito, P. (2015). Vacuum impregnation and air drying temperature effect on individual anthocyanins and antiradical capacity of blueberry juice included into an apple matrix. LWT - Food Science and Technology, 64(2), 1289-1296. doi:10.1016/j.lwt.2015.06.044Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., 
 Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702jMimouni, A., Deeth, H. C., Whittaker, A. K., Gidley, M. J., & Bhandari, B. R. (2009). Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocolloids, 23(7), 1958-1965. doi:10.1016/j.foodhyd.2009.01.010SeguĂ­, L., Calabuig-JimĂ©nez, L., Betoret, N., & Fito, P. (2015). Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar. International Journal of Food Science & Technology, 50(12), 2579-2588. doi:10.1111/ijfs.12926Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., VerhĂ©, R., & Camp, J. V. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 108(2), 649-656. doi:10.1016/j.foodchem.2007.11.056Cătunescu, G. M., Rotar, A. M., Pop, C. R., Diaconeasa, Z., Bunghez, F., Socaciu, M.-I., & Semeniuc, C. A. (2019). Influence of extraction pre-treatments on some phytochemicals and biological activity of Transylvanian cranberries (Vaccinium vitis-idea L.). LWT, 102, 385-392. doi:10.1016/j.lwt.2018.12.062Gopalsamy, G., Mortimer, E., Greenfield, P., Bird, A. R., Young, G. P., & Christophersen, C. T. (2019). Resistant Starch Is Actively Fermented by Infant Faecal Microbiota and Increases Microbial Diversity. Nutrients, 11(6), 1345. doi:10.3390/nu11061345Aguirre, M., Jonkers, D. M. A. E., Troost, F. J., Roeselers, G., & Venema, K. (2014). In Vitro Characterization of the Impact of Different Substrates on Metabolite Production, Energy Extraction and Composition of Gut Microbiota from Lean and Obese Subjects. PLoS ONE, 9(11), e113864. doi:10.1371/journal.pone.0113864Olano-Martin, E., Mountzouris, K. C., Gibson, G. R., & Rastall, R. A. (2000). In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. British Journal of Nutrition, 83(3), 247-255. doi:10.1017/s0007114500000325Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. doi:10.1186/gb-2011-12-6-r60Rohart, F., Gautier, B., Singh, A., & LĂȘ Cao, K.-A. (2017). mixOmics: An R package for ‘omics feature selection and multiple data integration. PLOS Computational Biology, 13(11), e1005752. doi:10.1371/journal.pcbi.1005752Vesterlund, S., Salminen, K., & Salminen, S. (2012). Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology, 157(2), 319-321. doi:10.1016/j.ijfoodmicro.2012.05.016Mosquera, L. H., Moraga, G., & MartĂ­nez-Navarrete, N. (2012). Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International, 47(2), 201-206. doi:10.1016/j.foodres.2011.05.019Lee, C.-W., Oh, H.-J., Han, S.-H., & Lim, S.-B. (2012). Effects of hot air and freeze drying methods on physicochemical properties of citrus ‘hallabong’ powders. Food Science and Biotechnology, 21(6), 1633-1639. doi:10.1007/s10068-012-0217-8Lucas-GonzĂĄlez, R., Viuda-Martos, M., PĂ©rez-Álvarez, J. Á., & FernĂĄndez-LĂłpez, J. (2017). Evaluation of Particle Size Influence on Proximate Composition, Physicochemical, Techno-Functional and Physio-Functional Properties of Flours Obtained from Persimmon (Diospyros kaki Trumb.) Coproducts. Plant Foods for Human Nutrition, 72(1), 67-73. doi:10.1007/s11130-016-0592-zCorrea-Betanzo, J., Allen-Vercoe, E., McDonald, J., Schroeter, K., Corredig, M., & Paliyath, G. (2014). Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry, 165, 522-531. doi:10.1016/j.foodchem.2014.05.135De Moraes Crizel, T., Hermes, V. S., de Oliveira Rios, A., & FlĂŽres, S. H. (2016). Evaluation of bioactive compounds, chemical and technological properties of fruits byproducts powder. Journal of Food Science and Technology, 53(11), 4067-4075. doi:10.1007/s13197-016-2413-7MartĂ­nez-Las Heras, R., Landines, E. F., Heredia, A., CastellĂł, M. L., & AndrĂ©s, A. (2017). Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. Journal of Food Science and Technology, 54(9), 2902-2912. doi:10.1007/s13197-017-2728-zConesa, C., Laguarda-MirĂł, N., Fito, P., & SeguĂ­, L. (2019). Evaluation of Persimmon (Diospyros kaki Thunb. cv. Rojo Brillante) Industrial Residue as a Source for Value Added Products. Waste and Biomass Valorization, 11(7), 3749-3760. doi:10.1007/s12649-019-00621-0MartĂ­nez-Las Heras, R., Pinazo, A., Heredia, A., & AndrĂ©s, A. (2017). Evaluation studies of persimmon plant ( Diospyros kaki ) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chemistry, 214, 478-485. doi:10.1016/j.foodchem.2016.07.104Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. doi:10.1080/16546628.2017.1361779Palafox-Carlos, H., Ayala-Zavala, J. F., & GonzĂĄlez-Aguilar, G. A. (2011). The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. Journal of Food Science, 76(1), R6-R15. doi:10.1111/j.1750-3841.2010.01957.xChen, G.-L., Chen, S.-G., Zhao, Y.-Y., Luo, C.-X., Li, J., & Gao, Y.-Q. (2014). Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products, 57, 150-157. doi:10.1016/j.indcrop.2014.03.018Stinco, C. M., FernĂĄndez-VĂĄzquez, R., Escudero-Gilete, M. L., Heredia, F. J., MelĂ©ndez-MartĂ­nez, A. J., & Vicario, I. M. (2012). Effect of Orange Juice’s Processing on the Color, Particle Size, and Bioaccessibility of Carotenoids. Journal of Agricultural and Food Chemistry, 60(6), 1447-1455. doi:10.1021/jf2043949HedrĂ©n, E., Diaz, V., & Svanberg, U. (2002). Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method. European Journal of Clinical Nutrition, 56(5), 425-430. doi:10.1038/sj.ejcn.1601329Louis, P., Scott, K. P., Duncan, S. H., & Flint, H. J. (2007). Understanding the effects of diet on bacterial metabolism in the large intestine. Journal of Applied Microbiology, 102(5), 1197-1208. doi:10.1111/j.1365-2672.2007.03322.xFlint, H. J., Scott, K. P., Duncan, S. H., Louis, P., & Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3(4), 289-306. doi:10.4161/gmic.19897PĂ©rez-Burillo, S., Pastoriza, S., JimĂ©nez-HernĂĄndez, N., D’Auria, G., Francino, M. P., & RufiĂĄn-Henares, J. A. (2018). Effect of Food Thermal Processing on the Composition of the Gut Microbiota. Journal of Agricultural and Food Chemistry, 66(43), 11500-11509. doi:10.1021/acs.jafc.8b04077Waters, J. L., & Ley, R. E. (2019). The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biology, 17(1). doi:10.1186/s12915-019-0699-4Gopalsamy, G., Mortimer, E., Greenfield, P., Bird, A. R., Young, G. P., & Christophersen, C. T. (2019). Resistant Starch Is Actively Fermented by Infant Faecal Microbiota and Increases Microbial Diversity. Nutrients, 11(6), 1345. doi:10.3390/nu11061345Gu, F., Borewicz, K., Richter, B., der Zaal, P. H., Smidt, H., Buwalda, P. L., & Schols, H. A. (2018). In Vitro Fermentation Behavior of Isomalto/Malto‐Polysaccharides Using Human Fecal Inoculum Indicates Prebiotic Potential. Molecular Nutrition & Food Research, 62(12), 1800232. doi:10.1002/mnfr.201800232Mosele, J., MaciĂ , A., & Motilva, M.-J. (2015). Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review. Molecules, 20(9), 17429-17468. doi:10.3390/molecules200917429Vendrame, S., Guglielmetti, S., Riso, P., Arioli, S., Klimis-Zacas, D., & Porrini, M. (2011). Six-Week Consumption of a Wild Blueberry Powder Drink Increases Bifidobacteria in the Human Gut. Journal of Agricultural and Food Chemistry, 59(24), 12815-12820. doi:10.1021/jf202868

    A Single Dose of Nitrate Increases Resilience Against Acidification Derived From Sugar Fermentation by the Oral Microbiome

    Get PDF
    Tooth decay starts with enamel demineralization due to an acidic pH, which arises from sugar fermentation by acidogenic oral bacteria. Previous in vitro work has demonstrated that nitrate limits acidification when incubating complex oral communities with sugar for short periods (e.g., 1-5 h), driven by changes in the microbiota metabolism and/or composition. To test whether a single dose of nitrate can reduce acidification derived from sugar fermentation in vivo, 12 individuals received a nitrate-rich beetroot supplement, which was compared to a placebo in a blinded crossover setting. Sucrose-rinses were performed at baseline and 2 h after supplement or placebo intake, and the salivary pH, nitrate, nitrite, ammonium and lactate were measured. After nitrate supplement intake, the sucrose-induced salivary pH drop was attenuated when compared with the placebo (p &lt; 0.05). Salivary nitrate negatively correlated with lactate production and positively with ΔpH after sucrose exposure (r= -0.508 and 0.436, respectively, both p &lt; 0.05). Two additional pilot studies were performed to test the effect of sucrose rinses 1 h (n = 6) and 4 h (n = 6) after nitrate supplement intake. In the 4 h study, nitrate intake was compared with water intake and bacterial profiles were analysed using 16S rRNA gene Illumina sequencing and qPCR detection of Rothia. Sucrose rinses caused a significant pH drop (p &lt; 0.05), except 1 h and 4 h after nitrate supplement intake. After 4 h of nitrate intake, there was less lactate produced compared to water intake (p &lt; 0.05) and one genus; Rothia, increased in abundance. This small but significant increase was confirmed by qPCR (p &lt; 0.05). The relative abundance of Rothia and Neisseria negatively correlated with lactate production (r = -0.601 and -0.669, respectively) and Neisseria positively correlated with pH following sucrose intake (r = 0.669, all p &lt; 0.05). Together, these results show that nitrate can acutely limit acidification when sugars are fermented, which appears to result from lactate usage by nitrate-reducing bacteria. Future studies should assess the longitudinal impact of daily nitrate-rich vegetable or supplement intake on dental health

    Nitrate reduction capacity of the oral microbiota is impaired in periodontitis: potential implications for systemic nitric oxide availability

    Get PDF
    The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity (NRC) and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitrate-reducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals (P &lt; 0.05 in all five datasets with n = 20–82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate (a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15 healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment (P &lt; 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria (P &lt; 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies

    Gut colonization by a novel Clostridium species is associated with the onset of epizootic rabbit enteropathy

    Get PDF
    Epizootic rabbit enteropathy (ERE) represents one of the most devastating diseases affecting rabbit farms. Previous studies showing transmissibility of disease symptoms through oral inoculation of intestinal contents from sick animals suggested a bacterial infectious origin for ERE. However, no etiological agent has been identified yet. On the other hand, ERE is associated with major changes in intestinal microbial communities, pinpointing dysbiosis as an alterna‑ tive cause for the disease. To better understand the role of intestinal bacteria in ERE development, we have performed a prospective longitudinal study in which intestinal samples collected from the same animals before, during and after disease onset were analyzed using high‑throughput sequencing. Changes in hundreds of bacterial groups were detected after the initiation of ERE. In contrast, before ERE onset, the microbiota from rabbits that developed ERE did not differ from those that remained healthy. Notably, an expansion of a single novel Clostridium species (Clostridium cuniculi) was detected the day of ERE onset. C. cuniculi encodes several putative toxins and it is phylogenetically related to the two well‑characterized pathogens C. botulinum and C. perfringens. Our results are consistent with a bac‑ terial infectious origin of ERE and discard dysbiosis as the initial trigger of the disease. Although experimental valida‑ tion is required, results derived from sequencing analysis, propose a key role of C. cuniculi in ERE initiation

    Two-photon photocurrent and voltage up-conversion in a quantum dot intermediate band solar cell

    Get PDF
    It has been proposed that the use of self-assembled quantum dot (QD) arrays can break the Shockley-Queisser efficiency limit by extending the absorption of solar cells into the low-energy photon range while preserving their output voltage. This would be possible if the infrared photons are absorbed in the two sub-bandgap QD transitions simultaneously and the energy of two photons is added up to produce one single electron-hole pair, as described by the intermediate band model. Here, we present an InAs/Al 0.25Ga 0.75As QD solar cell that exhibits such electrical up-conversion of low-energy photons. When the device is monochromatically illuminated with 1.32 eV photons, open-circuit voltages as high as 1.58 V are measured (for a total gap of 1.8 eV). Moreover, the photocurrent produced by illumination with photons exciting the valence band to intermediate band (VB-IB) and the intermediate band to conduction band (IB-CB) transitions can be both spectrally resolved. The first corresponds to the QD inter-band transition and is observable for photons of energy mayor que 1 eV, and the later corresponds to the QD intra-band transition and peaks around 0.5 eV. The voltage up-conversion process reported here for the first time is the key to the use of the low-energy end of the solar spectrum to increase the conversion efficiency, and not only the photocurrent, of single-junction photovoltaic devices. In spite of the low absorption threshold measured in our devices - 0.25 eV - we report open-circuit voltages at room temperature as high as 1.12 V under concentrated broadband illumination
    • 

    corecore