448 research outputs found

    Journals' policies of storage and reuse of raw research data

    Get PDF
    This presentation shows the analysis of 5 subject categories of the JCR about the open-data policies concerning the availability of raw data in that journals. Moreover, it shows the relation of these policies with the impact factor and the quartile

    Trends in funding research and international collaboration on greenhouse gas emissions: A bibliometric approach.

    Full text link
    [EN] The Web of Science Core Collection platform was used to withdraw the papers included in this study. The studied period comprised from inception till 2018. Trends in research, journals of publication, subject areas of research, keywords most frequently used, countries of publication, international collaboration, and trends of funding research were also analyzed. A total of 3902 articles were published, most of them (52.5%) during the five-year period 2014-2018. The area with the highest number of papers was environmental sciences (41%), followed by energy fuels (16.6%) and engineering environmental (15.7%). "Nitrous oxide emissions" was the most frequent word, followed by "Carbon dioxide emissions" and "Methane emissions". Other words that stood out were "Life cycle assessment", "Climate change" and "Environmental impacts". The United States was the country with the highest productivity (27.9%), followed by China (12.8%) and the United Kingdom (9.6%). There was a concentration of research in recent years, as more than 80% of the papers were published in the last 10 years. The journals that published the largest number of publications were devoted mainly to environmental studies (sciences and engineering), sustainable and green science and technology, energy and fuels, economics, and agriculture. Half of the works were published in Europe and the other half between North America and Asia. Two thirds of the works (67%) were financed compared to a third that were not financed. The percentage of funded works has been increasing over the last decade, which is seen as an indication of the importance of GHGE.Aleixandre Tudo, J.; Castelló-Cogollos, L.; Aleixandre Benavent, JL.; Aleixandre-Benavent, R. (2021). Trends in funding research and international collaboration on greenhouse gas emissions: A bibliometric approach. Environmental Science and Pollution Research. 28(25):32330-32346. https://doi.org/10.1007/s11356-021-12776-232330323462825Aleixandre-Benavent R, Aleixandre-Tudó JL, Castelló-Cogollos L, Aleixandre JL (2017) Trends in scientific research on climate change in agriculture and forestry subject areas (2005-2014). J Clean Prod 147:406–418Aleixandre-Tudó JL, Bolaños-Pizarro M, Aleixandre JL, Aleixandre-Benavent R (2019a) Current trends in scientific research on global warming: a bibliometric analysis. Int J Global Warming 17:142–169Aleixandre-Tudó JL, Castelló-Cogollos L, Aleixandre JL, Aleixandre-Benavent R (2019b) Renewable energies: worldwide trends in research, funding and international collaboration. Renew Energy 139:268–278Aznar-Sanchez JA, Belmonte-Urena LJ, Velasco-Munoz JF, Manzano-Agugliaro F (2018) Economic analysis of sustainable water use: a review of worldwide research. J Clean Prod 198:1120–1132Batagelj V, Mrvar A (2002) Analysis and visualization of large networks. Lect Notes Comput Sci 2265:477e478Boden TA, Marland G, Andres RJ (2017) National CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751–2014. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. https://doi.org/10.3334/CDIAC/00001_V2017Chavarro D, Rafols I, Tang P (2018) To what extent is inclusion in the Web of Science an indicator of journal 'quality'? Res Evaluat 27:106–118Chung JW, Meltzer DO (2009) Estimate of the carbon footprint of the US Health Care sector. J Am Med Assoc 302:1970–1972Dalpe R (2002) Bibliometric analysis of biotechnology. Scientometrics 55:189e213Dwyer L, Forsyth P, Spurr R, Hoque S (2010) Estimating the carbon footprint of Australian tourism. J Sustain Tour 18:355–376Dodman D (2009) Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ Urban 21:185–201Englade AJ, Jin G (2006) Application of biotechnology in waste management for sustainable development: an overview. Manage Environ Qual Int J 17:467–477Fearnside PM (2000) Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim Chang 46:115–118Figueroa JD, Fout T, Plasynski S, Mellvried H, Srivastava RD (2008) Advances in CO2 capture technology—the US Department of Energy´s Carbon Sequestration Program. Int J Greenhouse Gas Control 2:9–20Gingras Y, Khelfaoui M (2018) Assessing the effect of the United States “citation advantage” on other countries' scientific impact as measured in the Web of Science (WoS) database. Scientometrics 114:517–532Goek A, Rigby J, Shapira P (2016) The impact of research funding on scientific outputs: evidence from six smaller European countries. J Assoc Inf Sci Technol 67:715–730Hache E, Palle A (2019) Renewable energy source integration into power networks, research trends and policy implications: a bibliometric and research actors survey analysis. Energy Policy 124:23–25Haunnschild R, Bornmann L, Marx V (2016) Climate change research in view of bibliometrics. PLoS One 11:1e19Hertwich EG, Peters GP (2009) Carbon footprint of Nations: a global, trade-linked analysis. Environ Sci Technol 43:6414–6420Husain S, Mushtaq M (2015) Research assessment of climate change data: a scientometric construct. Qualitative and Quantitative Methods in Libraries Special Issue 183e194IPCC (2014). Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: global and sectorial aspects. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp 1-32Iribarren D, Vázquez-Rowe I, Hospido A, Moreira MT, Feijoo T (2010) Estimation of the carbon footprint of the Galician fishing activity (NW Spain). Sci Total Environ 408:5284–5294Jacob BA, Lefgren L (2011) The impact of research grant funding on scientific productivity. J Public Econ 95(9-10):1168–1177Lacis AA, Schmidt GA, Rind D, Ruedy RA (2010) Atmospheric CO2: principal control knob governing earth´s temperature. Science 330:356–359Lee KH (2011) Integrating carbon footprint into supply chain management: the case of Hunday Motor Company in the automobile industry. J Clean Prod 19:1216–1223Leydesdorff L, Wagner C, Bornmann L (2014) The European Union, China, and the United States in the top-1% and top-10% layers of most-frequently cited publications: competition and collaborations. J Inf Secur 8:606–617Martin-Martin A, Orduna-Malea E, Lopez-Cozar E (2018) Coverage of highly-cited documents in Google Scholar, Web of Science, and Scopus: a multidisciplinary comparison. Scientometrics 116:2175–2188Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LE, Strand WG, Teng H (2005) How much more global warming and sea level rise? Science 307:1769–1772McKain K, Wofsy SC, Nehrkorn T, Eluszkiewicz J, Ehleringer JR, Stephen BB (2012) Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc Natl Acad Sci U S A 109:8423–8428Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 degrees C. Nature 458(7242):1158–1162Mongeon P, Paul-Hus A (2016) The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics 106:213–228Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, van Cleemput O (1998) Closing the global N(2)O budget: nitrous oxide emissions through the agricultural nitrogen cycle—OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nut Cycling Agroeco 52:225–248Penela AC, García-Negro MC, Quesada JLD (2009) A methodological proposal for corporate carbon footprint and its application to a wine-producing company in Galicia. Sustainability 1:302–318Paris Agreement (2015) Adopted at the XXI international conference on climate change (COP21) in December 2015Parsons D (2009) The environmental impact of engineering education in Australia. Int J Life Cycle Assess 14:175–183Paul-Hus A, Desrochers N, Costas R (2016) Characterization, description, and considerations for the use of funding acknowledgement data in Web of Science. Scientometrics 108:167–182Patz JA, Grabow ML, Limaye VS (2014) When it rains, it pours: future climate extremes and health. Ann Global Health 80:332–344Raper S, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311–313Riahi K, Rao S, Krey V, Cho CH, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from and-use change. Science 319(5867):1238–1240Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ 133:247–266Samaras C, Meisterling K (2008) Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ Sci Technol 42:3170–3176Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Chang 68:281–302Song Y, Zhao TZ (2013) A bibliometric analysis of global forest ecology research during 2002–2011. Springerplus 2:204United States Environmental Protection Agency (2019) Global Greenhouse Gas Emissions Data. Accessed 11/07/2019. Available at: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data#Country.van Vuuren DP, Hoogwijk M, Barker T, Riahi K, Boeters S, Chateau J, Scrieciu S, van Vliet J, Masui T, Blok K, Blomen E, Kram T (2009) Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emissions reduction potentials. Energy Policy 37(12):5125–5139Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O, Banister D, Beevers S, Chalabi Z, Chowdhury Z, Cohen A, Franco OH, Haines A, Hickman R, Lindsay G, Mittal I, Mohan D, Tiwari G, Woodward A, Roberts I (2009) Health and Climate Change 2 Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet 374(9705):1930–1943Yan E, Wu C, Song M (2018) The funding factor: a cross-disciplinary examination of the association between research funding and citation impact. Scientometrics 115:369–384Yang L, Chen Z, Xiong Z, Liu Y, Ying X (2015) Comparison study of landfill gas emissions from subtropical landfill with various phases: a case study in Wuhan, China. J Air Waste Manage Assoc 65:980–986Yang L, Chen Z, Liu T, Gong Z, Yu Y, Wang J (2013) Global trends of solid waste research from 1997 to 2011 by using bibliometric analysis. Scientometrics 96:133–146Zhang J, Smith KR, Ma Y, Ye S, Jiang F, Qi W, Liu P, Khalil MAK, Rasmussen RA, Thorneloe SA (2000) Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors. Atmos Environ 34:4537–454

    Worldwide Scientific Research on Nanotechnology: A Bibliometric Analysis of Tendencies, Funding, and Challenges

    Full text link
    This document is the unedited Author¿s version of a Submitted Work that was subsequently accepted for publication in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.jafc.0c02141.[EN] The main objective of this investigation was to analyze the scientific production in global research on nanotechnology, integrating scientific production, funding of studies, collaborations between countries, and the most cited publications. The source for obtaining the research papers for our analysis was the Science Citation Index Expanded from the Web of Science. A total of 3546 documents were extracted during the period of 1997-2018. Food science & technology, chemistry (applied and analytical), spectroscopy, and agriculture appeared as the main areas where the articles were published. Most prolific and cited journals were Analytical Methods, Journal of Agricultural and Food Chemistry, and Food Chemistry. The co-word analysis showed the relationships between "nanoparticles", which is the central word, and "silver nanoparticles", "delivery systems", and "zincnanoparticles". The most productive countries were China (1089 papers), the United States (523), Iran (427), and India (359). The main cited topics deal with the biomedical applications of nanoparticles, its synthesis from plants, and its applications in food science. The results highlight an important collaboration between institutions and countries. The availability of funding for research in nanotechnology was remarkable compared to other fields. The multidisciplinarity of the nanotechnology field is one of the main features as well as one of the central findings.Aleixandre-Tudó, JL.; Bolaños Pizarro, M.; Aleixandre Benavent, JL.; Aleixandre-Benavent, R. (2020). Worldwide Scientific Research on Nanotechnology: A Bibliometric Analysis of Tendencies, Funding, and Challenges. Journal of Agricultural and Food Chemistry. 68(34):9158-9170. https://doi.org/10.1021/acs.jafc.0c02141S915891706834Ranjan, S., Dasgupta, N., & Lichtfouse, E. (Eds.). (2016). Nanoscience in Food and Agriculture 1. Sustainable Agriculture Reviews. doi:10.1007/978-3-319-39303-2National Science and Technology Council (NSTC). National Nanotechnology Initiative Strategic Plan; NSTC: Washington, D.C., 2016; https://www.nano.gov/sites/default/files/pub_resource/2016-nni-strategic-plan.pdf (accessed June 11, 2020.Durán, N., & Marcato, P. D. (2012). Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. International Journal of Food Science & Technology, 48(6), 1127-1134. doi:10.1111/ijfs.12027Chaudhry, Q., Castle, L., & Watkins, R. (Eds.). (2010). Nanotechnologies in Food. Nanoscience & Nanotechnology Series. doi:10.1039/9781847559883Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24. doi:10.1016/j.jcis.2011.07.017Chen, W.-T., Chan, A., Jovic, V., Sun-Waterhouse, D., Murai, K., Idriss, H., & Waterhouse, G. I. N. (2014). Effect of the TiO2 Crystallite Size, TiO2 Polymorph and Test Conditions on the Photo-Oxidation Rate of Aqueous Methylene Blue. Topics in Catalysis, 58(2-3), 85-102. doi:10.1007/s11244-014-0348-7WATERHOUSE, G. (2004). Influence of catalyst morphology on the performance of electrolytic silver catalysts for the partial oxidation of methanol to formaldehyde. Applied Catalysis A: General, 266(2), 257-273. doi:10.1016/j.apcata.2004.02.015Chen, W.-T., Chan, A., Sun-Waterhouse, D., Moriga, T., Idriss, H., & Waterhouse, G. I. N. (2015). Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol–water mixtures. Journal of Catalysis, 326, 43-53. doi:10.1016/j.jcat.2015.03.008Allen, M. W., Zemlyanov, D. Y., Waterhouse, G. I. N., Metson, J. B., Veal, T. D., McConville, C. F., & Durbin, S. M. (2011). Polarity effects in the x-ray photoemission of ZnO and other wurtzite semiconductors. Applied Physics Letters, 98(10), 101906. doi:10.1063/1.3562308Leveneur, J., Waterhouse, G. I. N., Kennedy, J., Metson, J. B., & Mitchell, D. R. G. (2011). Nucleation and Growth of Fe Nanoparticles in SiO2: A TEM, XPS, and Fe L-Edge XANES Investigation. The Journal of Physical Chemistry C, 115(43), 20978-20985. doi:10.1021/jp206357cWaterhouse, G. I. N., Chen, W.-T., Chan, A., Jin, H., Sun-Waterhouse, D., & Cowie, B. C. C. (2015). Structural, Optical, and Catalytic Support Properties of γ-Al2O3 Inverse Opals. The Journal of Physical Chemistry C, 119(12), 6647-6659. doi:10.1021/acs.jpcc.5b00437Murdoch, M., Waterhouse, G. I. N., Nadeem, M. A., Metson, J. B., Keane, M. A., Howe, R. F., … Idriss, H. (2011). The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nature Chemistry, 3(6), 489-492. doi:10.1038/nchem.1048Sharma, M., Waterhouse, G. I. N., Loader, S. W. C., Garg, S., & Svirskis, D. (2013). High surface area polypyrrole scaffolds for tunable drug delivery. International Journal of Pharmaceutics, 443(1-2), 163-168. doi:10.1016/j.ijpharm.2013.01.006Yabutani, T., Waterhouse, G. I. N., Sun-Waterhouse, D., Metson, J. B., Iinuma, A., Thuy, L. T. X., … Motonaka, J. (2014). Facile synthesis of platinum nanoparticle-containing porous carbons, and their application to amperometric glucose biosensing. Microchimica Acta, 181(15-16), 1871-1878. doi:10.1007/s00604-014-1270-1Suominen, A., Li, Y., Youtie, J., & Shapira, P. (2016). A bibliometric analysis of the development of next generation active nanotechnologies. Journal of Nanoparticle Research, 18(9). doi:10.1007/s11051-016-3578-8Sahoo, S. K., Parveen, S., & Panda, J. J. (2007). The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 20-31. doi:10.1016/j.nano.2006.11.008Celik, I., Mason, B. E., Phillips, A. B., Heben, M. J., & Apul, D. (2017). Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes. Environmental Science & Technology, 51(8), 4722-4732. doi:10.1021/acs.est.6b06272Xiao, H., Ai, Z., & Zhang, L. (2009). Nonaqueous Sol−Gel Synthesized Hierarchical CeO2 Nanocrystal Microspheres as Novel Adsorbents for Wastewater Treatment. The Journal of Physical Chemistry C, 113(38), 16625-16630. doi:10.1021/jp9050269Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211-212, 112-125. doi:10.1016/j.jhazmat.2011.11.073KOSTOFF, R., TSHITEYA, R., PFEIL, K., HUMENIK, J., & KARYPIS, G. (2005). Power source roadmaps using bibliometrics and database tomography. Energy, 30(5), 709-730. doi:10.1016/j.energy.2004.04.058Heersmink, R., van den Hoven, J., van Eck, N. J., & van den Berg, J. (2011). Bibliometric mapping of computer and information ethics. Ethics and Information Technology, 13(3), 241-249. doi:10.1007/s10676-011-9273-7Moed, H. F., De Bruin, R. E., & Van Leeuwen, T. N. (1995). New bibliometric tools for the assessment of national research performance: Database description, overview of indicators and first applications. Scientometrics, 33(3), 381-422. doi:10.1007/bf02017338Kostoff, R. N. (2002). Scientometrics, 53(1), 49-71. doi:10.1023/a:1014831920172Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365-391. doi:10.1016/j.joi.2016.02.007Aleixandre-Tudó, J. L., Castelló-Cogollos, L., Aleixandre, J. L., & Aleixandre-Benavent, R. (2019). Tendencies and Challenges in Worldwide Scientific Research on Probiotics. Probiotics and Antimicrobial Proteins, 12(3), 785-797. doi:10.1007/s12602-019-09591-0Rueda, G.; Gerdsri, P.; Kocaoglu, D. F. Bibliometrics and Social Network Analysis of the Nanotechnology Field. PICMET 2007 Proceedings; Portland, OR, Aug 5–9, 2007.Aleixandre-Tudó, J. L., Castelló-Cogollos, L., Aleixandre, J. L., & Aleixandre-Benavent, R. (2019). Renewable energies: Worldwide trends in research, funding and international collaboration. Renewable Energy, 139, 268-278. doi:10.1016/j.renene.2019.02.079Batagelj, V., & Mrvar, A. (2002). Pajek— Analysis and Visualization of Large Networks. Lecture Notes in Computer Science, 477-478. doi:10.1007/3-540-45848-4_54Chiu, W.-T., & Ho, Y.-S. (2007). Bibliometric analysis of tsunami research. Scientometrics, 73(1), 3-17. doi:10.1007/s11192-005-1523-1Aleixandre-Benavent, R., Aleixandre-Tudó, J. L., Castelló-Cogollos, L., & Aleixandre, J. L. (2018). Trends in global research in deforestation. A bibliometric analysis. Land Use Policy, 72, 293-302. doi:10.1016/j.landusepol.2017.12.060Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe vera Plant Extract. Biotechnology Progress, 22(2), 577-583. doi:10.1021/bp0501423Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2007). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715-728. doi:10.1007/s11051-007-9266-yDuran, E., Astroza, K., Ocaranza-Ozimica, J., Peñailillo, D., Pavez-Soto, I., & Ramirez-Tagle, R. (2019). Scientific Research on Nanotechnology in Latin American Journals Published in SciELO: Bibliometric Analysis of Gender Differences. NanoEthics, 13(2), 113-118. doi:10.1007/s11569-019-00344-5Braun, T., Schubert, A., & Zsindely, S. (1997). Nanoscience and nanotecnology on the balance. Scientometrics, 38(2), 321-325. doi:10.1007/bf02457417Hullmann, A., & Meyer, M. (2003). Publications and patents in nanotechnology. Scientometrics, 58(3), 507-527. doi:10.1023/b:scie.0000006877.45467.a7Schummer, J. (2004). Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425-465. doi:10.1023/b:scie.0000018542.71314.38Arora, S. K., Youtie, J., Carley, S., Porter, A. L., & Shapira, P. (2013). Measuring the development of a common scientific lexicon in nanotechnology. Journal of Nanoparticle Research, 16(1). doi:10.1007/s11051-013-2194-0Munoz-Sandoval, E. (2013). Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach. Journal of Nanoparticle Research, 16(1). doi:10.1007/s11051-013-2152-xRoco, M. C., Mirkin, C. A., & Hersam, M. C. (2011). Nanotechnology research directions for societal needs in 2020: summary of international study. Journal of Nanoparticle Research, 13(3), 897-919. doi:10.1007/s11051-011-0275-5Pardo-Guerra, J. P. (2011). Mapping emergence across the Atlantic: Some (tentative) lessons on nanotechnology in Latin America. Technology in Society, 33(1-2), 94-108. doi:10.1016/j.techsoc.2011.03.012Youtie, J., Porter, A. L., Shapira, P., & Newman, N. (2018). Lessons From 10 Years of Nanotechnology Bibliometric Analysis. Nanotechnology Environmental Health and Safety, 11-31. doi:10.1016/b978-0-12-813588-4.00002-6Yamashita, Y., & Okubo, Y. (2006). Patterns of scientific collaboration between Japan and France: Inter-sectoral analysis using Probabilistic Partnership Index (PPI). Scientometrics, 68(2), 303-324. doi:10.1007/s11192-006-0105-1Guan, J., & Ma, N. (2007). China’s emerging presence in nanoscience and nanotechnology. Research Policy, 36(6), 880-886. doi:10.1016/j.respol.2007.02.004Niu, F., & Qiu, J. (2013). Network structure, distribution and the growth of Chinese international research collaboration. Scientometrics, 98(2), 1221-1233. doi:10.1007/s11192-013-1170-xTang, L., Shapira, P., & Youtie, J. (2015). Is there a clubbing effect underlying Chinese research citation Increases? Journal of the Association for Information Science and Technology, 66(9), 1923-1932. doi:10.1002/asi.23302Jiang, M., Qi, Y., Liu, H., & Chen, Y. (2018). The Role of Nanomaterials and Nanotechnologies in Wastewater Treatment: a Bibliometric Analysis. Nanoscale Research Letters, 13(1). doi:10.1186/s11671-018-2649-4Brahic, C. China Encroaches on US Nanotech Lead; SciDev.Net: Wallingford, U.K., 2005; https://www.scidev.net/global/publishing/news/china-encroaches-on-us-nanotech-lead.html (accessed March 10, 2020).Terekhov, A. I. (2017). Bibliometric spectroscopy of Russia’s nanotechnology: 2000–2014. Scientometrics, 110(3), 1217-1242. doi:10.1007/s11192-016-2234-5Lee, S., & Bozeman, B. (2005). The Impact of Research Collaboration on Scientific Productivity. Social Studies of Science, 35(5), 673-702. doi:10.1177/0306312705052359Wang, L., Jacob, J., & Li, Z. (2018). Exploring the spatial dimensions of nanotechnology development in China: the effects of funding and spillovers. Regional Studies, 53(2), 245-260. doi:10.1080/00343404.2018.1457216McFadyen, M. A., & Cannella, A. A. (2004). SOCIAL CAPITAL AND KNOWLEDGE CREATION: DIMINISHING RETURNS OF THE NUMBER AND STRENGTH OF EXCHANGE RELATIONSHIPS. Academy of Management Journal, 47(5), 735-746. doi:10.2307/20159615He, Z.-L., Geng, X.-S., & Campbell-Hunt, C. (2009). Research collaboration and research output: A longitudinal study of 65 biomedical scientists in a New Zealand university. Research Policy, 38(2), 306-317. doi:10.1016/j.respol.2008.11.011Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The Increasing Dominance of Teams in Production of Knowledge. Science, 316(5827), 1036-1039. doi:10.1126/science.1136099Zhou, P., & Glänzel, W. (2010). In-depth analysis on China’s international cooperation in science. Scientometrics, 82(3), 597-612. doi:10.1007/s11192-010-0174-zTakeda, Y., Mae, S., Kajikawa, Y., & Matsushima, K. (2009). Nanobiotechnology as an emerging research domain from nanotechnology: A bibliometric approach. Scientometrics, 80(1), 23-38. doi:10.1007/s11192-007-1897-

    Journals' policies of storage and reuse of raw research data

    Get PDF
    This presentation shows the analysis of 5 subject categories of the JCR about the open-data policies concerning the availability of raw data in that journals. Moreover, it shows the relation of these policies with the impact factor and the quartile

    Information sources in health sciences in Internet

    Get PDF
    En este trabajo se describen las principales fuentes de información en ciencias de la salud que pueden ser útiles para los profesionales de la traducción médica, fundamentalmente las bases de datos bibliográficas de información científica nacionales y extranjeras y los buscadores de información en Internet, así como la metodología para efectuar búsquedas bibliográficas precisas y exhaustivas. Se hace hincapié en las posibilidades de Internet para el acceso a los trabajos académicos y científicos, la navegación a través de los documentos hipertextuales y el acceso al documento original en diversos formatos. Por último, se analizan algunas aplicaciones de la web 2.0 destinadas a mejorar la comunicación y el conocimiento y las principales estrategias para mantenerse al día de las nuevas informaciones que van incorporándose al conocimiento en las revistas, bases de datos y páginas web y que son de nuestro interés.This paper describes the main sources of information on health sciences that may be useful to medical translators. We focus on domestic and foreign bibliographic databases and Internet search engines, as well as a methodology for carrying out accurate and comprehensive literature searches. We emphasize the Internet’s potential with regard to accessing academic and scientific papers, hypertext navigation and access to the original document in various formats. Finally, we explore some Web 2.0 applications for improving communication and knowledge and the main strategies for keeping current on the new information that is continually added to journals, databases and websites in our areas of interest

    Impact factor, commercial competition between Thomson Reuters and Elsevier, and economic crisis

    Get PDF
    The use of the impact factor has evolved and it has become the indicator to measure not only the quality of journals but also of authors and research groups, provoking strong reactions from publishers, researchers, librarians and evaluation committees. This paper presents a reflection about the relationship between strategies and business decisions of private companies (such as Elsevier and Thomson Reuters) and the Spanish system of evaluating scientific activity

    Scientific communication in 2011

    Get PDF
    An analysis of the situation of scientific communication in 2011 highlights some of the more relevant events, news and issues. Topics discussed include: the open access initiative and institutional repositories, semantic interoperability and linked data, use of the internet, right to information, rise of professional and academic profiles on the Web, trends in bibliometric indicators, consolidation of national scientific evaluation tools, trends observed in conferences and congresses, and the race for rankings in scientific publication between the United States, China and Europe

    La contribució científica de l'exili: El cas de la revista «CIENCIA» (1940-1975)

    Get PDF
    The Exiles’ Scientifi c Contribution. Citing the Journal Ciencia (1940-1975).Ciencia was a publication launched by Spanish scientists, exiled due to the Civil War (1936-1939), through which they disseminated their work. Despite economic setbacks, which were to blame for the irregularity of its issues, the magazine became an internationally renowned focus of study between 1941and 1975, during which time it was published in Mexico. The Editorial Board brought together the major names in Spanish science that had been forced to leave the country. Noteworthy was the high female participation in writing articles for publication, touching on topic areas such as Biomedical Sciences

    Differences by gender and role in PhD theses on sociology in Spain

    Get PDF
    Trabajo presentado a la 15th International Society of Scientometrics and Informetrics Conference, celebrada en Estambúl (Turquia) del 29 de junio al 4 de julio de 2015.In recent years, there has been a growth in the number of papers that synthesize empirical research studies on gender and sex inequalities in academic statements. Furthermore, these studies can comply with European requirements of equalities since the Treaty of Amsterdam of 1999 enacted that equality between men and women should be included in all policies (Fernández Álvarez, 2014). Theses are the research papers by excellence and a good indicator to elucidate the lines and research trends in a field of science, since this work must be original and specialized and are subject to a rigorous academic assessment (Delgado López Cózar et al., 2006). Our objective is to analyse the differences in gender representation in the Spanish sociological theses focusing on three actors involved in the process: PhD students, supervisors and academic assessment boards.This work has benefited from assistance by the National R+D+I of the Ministry of Economy and Competitiveness of the Spanish Government (CSO2012-39632-C02-01) and Prometeo Program for excellent research groups of Generalitat Valenciana (GVPROMETEO2013-041).Peer reviewe

    Analysis of the collaboration between the US and the EU in viticulture and Oenology

    Full text link
    [EN] The network of scientific collaboration in viticulture and oenology between the United States and the European Union was studied for the period 1991-2010. A total of 498 articles were published collaboratively during this time. The most collaborative institutions in the US were the University of California Davis and Cornell University (New York), and the most collaborative institutions in the EU were Institut Nationale de la Recherche Agronomique (France), the Italian universities of Milan, Bologna and Udine, and the Spanish University of Barcelona. We note a considerable increase in collaboration in recent years, with the University of California Davis situated in a central position in the network.Aleixandre-Benavent, R.; Aleixandre Tudo, J.; González-Alcaide, G.; Aleixandre Benavent, JL. (2013). Analysis of the collaboration between the US and the EU in viticulture and Oenology. Italian Journal of Food Science. 25:1-13. http://hdl.handle.net/10251/75530S1132
    corecore