220 research outputs found

    A spatial national health facility database for public health sector planning in Kenya in 2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Efforts to tackle the enormous burden of ill-health in low-income countries are hampered by weak health information infrastructures that do not support appropriate planning and resource allocation. For health information systems to function well, a reliable inventory of health service providers is critical. The spatial referencing of service providers to allow their representation in a geographic information system is vital if the full planning potential of such data is to be realized.</p> <p>Methods</p> <p>A disparate series of contemporary lists of health service providers were used to update a public health facility database of Kenya last compiled in 2003. These new lists were derived primarily through the national distribution of antimalarial and antiretroviral commodities since 2006. A combination of methods, including global positioning systems, was used to map service providers. These spatially-referenced data were combined with high-resolution population maps to analyze disparity in geographic access to public health care.</p> <p>Findings</p> <p>The updated 2008 database contained 5,334 public health facilities (67% ministry of health; 28% mission and nongovernmental organizations; 2% local authorities; and 3% employers and other ministries). This represented an overall increase of 1,862 facilities compared to 2003. Most of the additional facilities belonged to the ministry of health (79%) and the majority were dispensaries (91%). 93% of the health facilities were spatially referenced, 38% using global positioning systems compared to 21% in 2003. 89% of the population was within 5 km Euclidean distance to a public health facility in 2008 compared to 71% in 2003. Over 80% of the population outside 5 km of public health service providers was in the sparsely settled pastoralist areas of the country.</p> <p>Conclusion</p> <p>We have shown that, with concerted effort, a relatively complete inventory of mapped health services is possible with enormous potential for improving planning. Expansion in public health care in Kenya has resulted in significant increases in geographic access although several areas of the country need further improvements. This information is key to future planning and with this paper we have released the digital spatial database in the public domain to assist the Kenyan Government and its partners in the health sector.</p

    A high resolution spatial population database of Somalia for disease risk mapping

    Get PDF
    The article investigates the possibility of creating a data collection system in an unstable environment like Somalia to estimate the incidence of infectious diseases in order to improve the reconstruction of the health sector.Maqaalku wuxuu baarayaa sidii lagu samayn lahaa nidaam lagu ururiyo daatooyinka meel aan xasillooneen sida Soomaaliya, si loo qiyaaso saamaynta cudurrada laysu gudbiyo, loona hagaajiyo qaybta caafimaadka.L'articolo indaga sulla possibilità di creare un sistema di raccolta dati in un contesto instabile come quello somalo per stimare l'incidenza di malattie infettive al fine di una migliore ricostruzione del settore sanitario

    Inpatient child mortality by travel time to hospital in a rural area of Tanzania.

    Get PDF
    OBJECTIVE: To investigate the association, if any, between child mortality and distance to the nearest hospital. METHODS: The study was based on data from a 1-year study of the cause of illness in febrile paediatric admissions to a district hospital in north-east Tanzania. All villages in the catchment population were geolocated, and travel times were estimated from availability of local transport. Using bands of travel time to hospital, we compared admission rates, inpatient case fatality rates and child mortality rates in the catchment population using inpatient deaths as the numerator. RESULTS: Three thousand hundred and eleven children under the age of 5 years were included of whom 4.6% died; 2307 were admitted from <3 h away of whom 3.4% died and 804 were admitted from ≥ 3 h away of whom 8.0% died. The admission rate declined from 125/1000 catchment population at <3 h away to 25/1000 at ≥ 3 h away, and the corresponding hospital deaths/catchment population were 4.3/1000 and 2.0/1000, respectively. Children admitted from more than 3 h away were more likely to be male, had a longer pre-admission duration of illness and a shorter time between admission and death. Assuming uniform mortality in the catchment population, the predicted number of deaths not benefiting from hospital admission prior to death increased by 21.4% per hour of travel time to hospital. If the same admission and death rates that were found at <3 h from the hospital applied to the whole catchment population and if hospital care conferred a 30% survival benefit compared to home care, then 10.3% of childhood deaths due to febrile illness in the catchment population would have been averted. CONCLUSIONS: The mortality impact of poor access to hospital care in areas of high paediatric mortality is likely to be substantial although uncertainty over the mortality benefit of inpatient care is the largest constraint in making an accurate estimate

    The risks of malariainfection in Kenya in 2009

    Get PDF
    BACKGROUND: To design an effective strategy for the control of malaria requires a map of infection and disease risks to select appropriate suites of interventions. Advances in model based geo-statistics and malaria parasite prevalence data assemblies provide unique opportunities to redefine national Plasmodium falciparum risk distributions. Here we present a new map of malaria risk for Kenya in 2009. METHODS: Plasmodium falciparum parasite rate data were assembled from cross-sectional community based surveys undertaken from 1975 to 2009. Details recorded for each survey included the month and year of the survey, sample size, positivity and the age ranges of sampled population. Data were corrected to a standard age-range of two to less than 10 years (PfPR2-10) and each survey location was geo-positioned using national and on-line digital settlement maps. Ecological and climate covariates were matched to each PfPR2-10 survey location and examined separately and in combination for relationships to PfPR2-10. Significant covariates were then included in a Bayesian geostatistical spatial-temporal framework to predict continuous and categorical maps of mean PfPR2-10 at a 1 x 1 km resolution across Kenya for the year 2009. Model hold-out data were used to test the predictive accuracy of the mapped surfaces and distributions of the posterior uncertainty were mapped. RESULTS: A total of 2,682 estimates of PfPR2-10 from surveys undertaken at 2,095 sites between 1975 and 2009 were selected for inclusion in the geo-statistical modeling. The covariates selected for prediction were urbanization; maximum temperature; precipitation; enhanced vegetation index; and distance to main water bodies. The final Bayesian geo-statistical model had a high predictive accuracy with mean error of -0.15% PfPR2-10; mean absolute error of 0.38% PfPR2-10; and linear correlation between observed and predicted PfPR2-10 of 0.81. The majority of Kenya's 2009 population (35.2 million, 86.3%) reside in areas where predicted PfPR2-10 is less than 5%; conversely in 2009 only 4.3 million people (10.6%) lived in areas where PfPR2-10 was predicted to be &gt; or =40% and were largely located around the shores of Lake Victoria. CONCLUSION: Model based geo-statistical methods can be used to interpolate malaria risks in Kenya with precision and our model shows that the majority of Kenyans live in areas of very low P. falciparum risk. As malaria interventions go to scale effectively tracking epidemiological changes of risk demands a rigorous effort to document infection prevalence in time and space to remodel risks and redefine intervention priorities over the next 10-15 years

    Spatio-temporal modelling of routine health facility data for malaria risk micro-stratification in mainland Tanzania

    Get PDF
    As malaria transmission declines, the need to monitor the heterogeneity of malaria risk at finer scales becomes critical to guide community-based targeted interventions. Although routine health facility (HF) data can provide epidemiological evidence at high spatial and temporal resolution, its incomplete nature of information can result in lower administrative units without empirical data. To overcome geographic sparsity of data and its representativeness, geo-spatial models can leverage routine information to predict risk in un-represented areas as well as estimate uncertainty of predictions. Here, a Bayesian spatio-temporal model was applied on malaria test positivity rate (TPR) data for the period 2017-2019 to predict risks at the ward level, the lowest decision-making unit in mainland Tanzania. To quantify the associated uncertainty, the probability of malaria TPR exceeding programmatic threshold was estimated. Results showed a marked spatial heterogeneity in malaria TPR across wards. 17.7 million people resided in areas where malaria TPR was high (>/= 30; 90% certainty) in the North-West and South-East parts of Tanzania. Approximately 11.7 million people lived in areas where malaria TPR was very low (< 5%; 90% certainty). HF data can be used to identify different epidemiological strata and guide malaria interventions at micro-planning units in Tanzania. These data, however, are imperfect in many settings in Africa and often require application of geo-spatial modelling techniques for estimation

    Identifying malaria transmission foci for elimination using human mobility data

    No full text
    Humans move frequently and tend to carry parasites among areas with endemic malaria and into areas where local transmission is unsustainable. Human-mediated parasite mobility can thus sustain parasite populations in areas where they would otherwise be absent. Data describing human mobility and malaria epidemiology can help classify landscapes into parasite demographic sources and sinks, ecological concepts that have parallels in malaria control discussions of transmission foci. By linking transmission to parasite flow, it is possible to stratify landscapes for malaria control and elimination, as sources are disproportionately important to the regional persistence of malaria parasites. Here, we identify putative malaria sources and sinks for pre-elimination Namibia using malaria parasite rate (PR) maps and call data records from mobile phones, using a steady-state analysis of a malaria transmission model to infer where infections most likely occurred. We also examined how the landscape of transmission and burden changed from the pre-elimination setting by comparing the location and extent of predicted pre-elimination transmission foci with modeled incidence for 2009. This comparison suggests that while transmission was spatially focal pre-elimination, the spatial distribution of cases changed as burden declined. The changing spatial distribution of burden could be due to importation, with cases focused around importation hotspots, or due to heterogeneous application of elimination effort. While this framework is an important step towards understanding progressive changes in malaria distribution and the role of subnational transmission dynamics in a policy-relevant way, future work should account for international parasite movement, utilize real time surveillance data, and relax the steady state assumption required by the presented model

    Global funding trends for malaria research in sub-Saharan Africa: a systematic analysis

    Get PDF
    Background Total domestic and international funding for malaria is inadequate to achieve WHO global targets in burden reduction by 2030. We describe the trends of investments in malaria-related research in sub-Saharan Africa and compare investment with national disease burden to identify areas of funding strength and potentially neglected populations. We also considered funding for malaria control. Methods Research funding data related to malaria for 1997–2013 were sourced from existing datasets, from 13 major public and philanthropic global health funders, and from funding databases. Investments (reported in US)wereconsideredbygeographicalareaandcomparedwithdataonparasiteprevalenceandpopulationsatriskinsubSaharanAfrica.45subSaharanAfricancountrieswererankedbyamountofresearchfundingreceived.FindingsWefound333researchawardstotallingUS) were considered by geographical area and compared with data on parasite prevalence and populations at risk in sub- Saharan Africa. 45 sub-Saharan African countries were ranked by amount of research funding received. Findings We found 333 research awards totalling US814·4 million. Public health research covered 3081million(378308·1 million (37·8%) and clinical trials covered 275·2 million (33·8%). Tanzania (1078million[132107·8 million [13·2%]), Uganda (97·9 million [12·0%]), and Kenya ($92·9 million [11·4%]) received the highest sum of research investment and the most research awards. Malawi, Tanzania, and Uganda remained highly ranked after adjusting for national gross domestic product. Countries with a reasonably high malaria burden that received little research investment or funding for malaria control included Central African Republic (ranked 40th) and Sierra Leone (ranked 35th). Congo (Brazzaville) and Guinea had reasonably high malaria mortality, yet Congo (Brazzaville) ranked 38th and Guinea ranked 25th, thus receiving little investment. Interpretation Some countries receive reasonably large investments in malaria-related research (Tanzania, Kenya, Uganda), whereas others receive little or no investments (Sierra Leone, Central African Republic). Research investments are typically highest in countries where funding for malaria control is also high. Investment strategies should consider more equitable research and operational investments across countries to include currently neglected and susceptible populations

    Mapping poverty using mobile phone and satellite data

    Get PDF
    Poverty is one of the most important determinants of adverse health outcomes globally, a major cause of societal instability and one of the largest causes of lost human potential. Traditional approaches to measuring and targeting poverty rely heavily on census data, which in most low- and middle-income countries (LMICs) are unavailable or out-of-date. Alternate measures are needed to comp- lement and update estimates between censuses. This study demonstrates how public and private data sources that are commonly available for LMICs can be used to provide novel insight into the spatial distribution of poverty. We evalu- ate the relative value of modelling three traditional poverty measures using aggregate data from mobile operators and widely available geospatial data. Taken together, models combining these data sources providethebest predictive power (highest r 2 ¼ 0.78) and lowest error, but generally models employing mobile data only yield comparable results, offering the potential to measure poverty more frequently and at finer granularity. Stratifying models into urban and rural areas highlights the advantage of using mobile data in urban areas and different data in different contexts. The findings indicate the possibility to estimate and continually monitor poverty rates at high spatial resolution in countries with limited capacity to support traditional methods of datacollection

    Geographical distribution of fertility rates in 70 low-income, lower-middle-income, and upper-middle-income countries, 2010–16: a subnational analysis of cross-sectional surveys

    Get PDF
    Background Understanding subnational variation in age-specific fertility rates (ASFRs) and total fertility rates (TFRs), and geographical clustering of high fertility and its determinants in low-income and middle-income countries, is increasingly needed for geographical targeting and prioritising of policy. We aimed to identify variation in fertility rates, to describe patterns of key selected fertility determinants in areas of high fertility. Methods We did a subnational analysis of ASFRs and TFRs from the most recent publicly available and nationally representative cross-sectional Demographic and Health Surveys and Multiple Indicator Cluster Surveys collected between 2010 and 2016 for 70 low-income, lower-middle-income, and upper-middle-income countries, across 932 administrative units. We assessed the degree of global spatial autocorrelation by using Moran's I statistic and did a spatial cluster analysis using the Getis-Ord Gi* local statistic to examine the geographical clustering of fertility and key selected fertility determinants. Descriptive analysis was used to investigate the distribution of ASFRs and of selected determinants in each cluster. Findings TFR varied from below replacement (2·1 children per women) in 36 of the 932 subnational regions (mainly located in India, Myanmar, Colombia, and Armenia), to rates of 8 and higher in 14 subnational regions, located in sub-Saharan Africa and Afghanistan. Areas with high-fertility clusters were mostly associated with areas of low prevalence of women with secondary or higher education, low use of contraception, and high unmet needs for family planning, although exceptions existed. Interpretation Substantial within-country variation in the distribution of fertility rates highlights the need for tailored programmes and strategies in high-fertility cluster areas to increase the use of contraception and access to secondary education, and to reduce unmet need for family planning. Funding Wellcome Trust, the UK Foreign, Commonwealth and Development Office, and the Bill & Melinda Gates Foundation
    corecore