37 research outputs found

    Intraventricular Meningiomas: Clinical-Pathological and Genetic Features of a Monocentric Series

    Get PDF
    Intraventricular meningiomas (IVMs) are rare (0.5-5%) and usually low-grade (90% grade I) brain neoplasms. Their recurrence rate is lower than that of extra-axial meningiomas, but their surgical resection can be burdened with life-threatening complications, which represent the major cause of the reported 4% mortality. The aim of this study is to characterize the molecular portrait of IVMs to identify potential therapeutic targets. For this, we explored mutations and copy number variations (CNV) of 409 cancer-related genes and tumor mutational burden (TMB) of six cases, using next-generation sequencing. Five IVMs were grade I and one was grade II; none recurred, in spite of partial surgical resection in one case. NF2 mutation was the only recurring alteration and was present in three of the six IVMs, in association with SMARCB1 mutation in one case. None of the cases was hypermutated (TMB > 10 mutations/Mb). NF2-mutant progressing or recurring IVMs could potentially be treated with targeted therapies applied to other NF2-mutant tumors, as an alternative to surgery or radiosurgery, while in view of their low TMB they are unlikely candidates to immune check-point inhibition

    The Immunohistochemical Loss of H3K27me3 in Intracranial Meningiomas Predicts Shorter Progression-Free Survival after Stereotactic Radiosurgery

    Get PDF
    The immunohistochemical loss of histone H3 trimethylated in lysine 27 (H3K27me3) was recently shown to predict recurrence of meningiomas after surgery. However, its association with tumor progression after stereotactic radiosurgery (SRS) is unexplored. To investigate whether H3K27 methylation status may predict progression-free survival (PFS) after SRS, we assessed H3K27me3 immunoexpression in thirty-nine treatment naïve, intracranial, meningiomas, treated with surgery and subsequent SRS for residual (twenty-three cases) or recurrent (sixteen cases) disease. H3K27me3 immunostaining was lost in seven meningiomas, retained in twenty-seven and inconclusive in five. Six of the seven meningiomas (86%) with H3K27me3 loss had tumor progression after SRS, compared to nine of twenty-seven (33%) with H3K27me3 retention (p = 0.0143). In addition, patients harboring a meningioma with H3K27me3 loss had significantly shorter PFS after SRS (range: 10-81 months; median: 34 months), compared to patients featuring a meningioma with retained H3K27me3 (range: 9-143 months; median: 62 months) (p = 0.0036). Nonetheless, tumor sagittal location was the only significant prognostic variable at multivariate analysis for PFS after SRS (p = 0.0142). These findings suggest a previously unreported role of H3K27me3 as a predictor of meningioma progression after SRS for recurrent or residual disease. Modulation of H3K27 methylation status may represent a novel therapeutic strategy to induce radiosensitization of meningiomas

    IDH-wild type glioblastomas featuring at least 30% giant cells are characterized by frequent RB1 and NF1 alterations and hypermutation

    Get PDF
    : Giant cell glioblastoma (GC-GBM) is a rare variant of IDH-wt GBM histologically characterized by the presence of numerous multinucleated giant cells and molecularly considered a hybrid between IDH-wt and IDH-mutant GBM. The lack of an objective definition, specifying the percentage of giant cells required for this diagnosis, may account for the absence of a definite molecular profile of this variant. This study aimed to clarify the molecular landscape of GC-GBM, exploring the mutations and copy number variations of 458 cancer-related genes, tumor mutational burden (TMB), and microsatellite instability (MSI) in 39 GBMs dichotomized into having 30-49% (15 cases) or\u2009 65\u200950% (24 cases) GCs. The type and prevalence of the genetic alterations in this series was not associated with the GCs content (<\u200950% or 65\u200950%). Most cases (82% and 51.2%) had impairment in TP53/MDM2 and PTEN/PI3K pathways, but a high proportion also featured TERT promoter mutations (61.5%) and RB1 (25.6%) or NF1 (25.6%) alterations. EGFR amplification was detected in 18% cases in association with a shorter overall survival (P\u2009=\u20090.004). Sixteen (41%) cases had a TMB\u2009>\u200910 mut/Mb, including two (5%) that harbored MSI and one with a POLE mutation. The frequency of RB1 and NF1 alterations and TMB counts were significantly higher compared to 567 IDH wild type (P\u2009<\u20090.0001; P\u2009=\u20090.0003; P\u2009<\u20090.0001) and 26 IDH-mutant (P\u2009<\u20090.0001; P\u2009=\u20090.0227; P\u2009<\u20090.0001) GBMs in the TCGA PanCancer Atlas cohort. These findings demonstrate that the molecular landscape of GBMs with at least 30% giant cells is dominated by the impairment of TP53/MDM2 and PTEN/PI3K pathways, and additionally characterized by frequent RB1 alterations and hypermutation and by EGFR amplification in more aggressive cases. The high frequency of hypermutated cases suggests that GC-GBMs might be candidates for immune check-point inhibitors clinical trials

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    White Rabbit Facility

    No full text
    We describe a White Rabbit Facility for time synchronization we are preparing for the future Cherenkov Telescope Array observatory

    White Rabbit Facility

    No full text
    We describe a White Rabbit Facility for time synchronization we are preparing for the future Cherenkov Telescope Array observatory

    Atypical meningiomas with an immunohistochemical profile consistent with hypermetabolic or proliferative molecular groups show high mitotic index, chromosomal instability, and higher recurrence risk

    No full text
    : The use of adjuvant radiotherapy is controversial for atypical meningiomas undergoing gross total resection. It has recently been proposed that meningiomas may be classified into four molecular groups (MG): immunogenic (MG1), benign NF2-wildtype (MG2), hypermetabolic (MG3), and proliferative (MG4). The two latter have the worst prognosis, and it has been suggested that they can be identified using ACADL and MCM2 immunostainings. We studied 55 primary atypical meningiomas, treated with gross total resection and no adjuvant therapies, to assess whether ACADL and MCM2 immuno-expression may identify patients at higher recurrence risk, thus requiring adjuvant treatments. Twelve cases resulted ACADL-/MCM2-, 9 ACADL + /MCM2-, 17 ACADL + /MCM2 + , and 17 ACADL-/MCM2 + . MCM2 + meningiomas displayed more frequent atypical features (prominent nucleoli, small cells with high nuclear-to-cytoplasmic ratio) and CDKN2A hemizygous deletion (HeDe) (P = 0.011). The immunoexpression of ACADL and/or MCM2 was significantly associated with higher mitotic index, 1p and 18q deletions, increased recurrence rate (P = 0.0006), and shorter recurrence-free survival (RFS) (P = 0.032). At multivariate analysis, carried out including ACADL/MCM2 immuno-expression, mitotic index, and CDKN2A HeDe as covariates, this latter resulted a significant and independent prognosticator of shorter RFS (P = 0.0003)

    Computer-Aided Design of Agents That Inhibit the cep Quorum-Sensing System of Burkholderia cenocepacia

    No full text
    Recent research has provided evidence that interference with bacterial cell-to-cell signaling is a promising strategy for the development of novel antimicrobial agents. Here we report on the computer-aided design of novel compounds that specifically inhibit an N-acyl-homoserine lactone-dependent communication system that is widespread among members of the genus Burkholderia. This genus comprises more than 30 species, many of which are important pathogens of animals and humans. Over the past few years, several Burkholderia species, most notably Burkholderia cenocepacia, have emerged as important opportunistic pathogens causing severe pulmonary deterioration in persons with cystic fibrosis. As efficient treatment of Burkholderia infections is hampered by the inherent resistance of the organisms to a large range of antibiotics, novel strategies for battling these pathogens need to be developed. Here we show that compounds targeting the B. cenocepacia signaling system efficiently inhibit the expression of virulence factors and attenuate the pathogenicity of the organism
    corecore