159 research outputs found
Volume-aware design of composite molds.
We propose a novel technique for the automatic design of molds to cast highly complex shapes. The technique generates composite, two-piece molds. Each mold piece is made up of a hard plastic shell and a flexible silicone part. Thanks to the thin, soft, and smartly shaped silicone part, which is kept in place by a hard plastic shell, we can cast objects of unprecedented complexity. An innovative algorithm based on a volumetric analysis defines the layout of the internal cuts in the silicone mold part. Our approach can robustly handle thin protruding features and intertwined topologies that have caused previous methods to fail. We compare our results with state of the art techniques, and we demonstrate the casting of shapes with extremely complex geometry
First Application of Pulse-Shape Analysis to Silicon Micro-Strip Detectors
The method of pulse-shape analysis (PSA) for particle identification (PID)
was applied to a double-sided silicon strip detector (DSSD) with a strip pitch
of 300 \{mu}m. We present the results of test measurements with particles from
the reactions of a 70 MeV 12C beam impinging on a mylar target. Good separation
between protons and alpha particles down to 3 MeV has been obtained when
excluding the interstrip events of the DSSD from the analysis.Comment: 7 pages, 6 figures, submitted to Nuclear Inst. and Methods in Physics
Research
Mass and charge identification of fragments detected with the Chimera Silicon-CsI(Tl) telescopes
Mass and charge identification of charged products detected with
Silicon-CsI(Tl) telescopes of the Chimera apparatus is presented. An
identification function, based on the Bethe-Bloch formula, is used to fit
empirical correlation between Delta E and E ADC readings, in order to
determine, event by event, the atomic and mass numbers of the detected charged
reaction products prior to energy calibration.Comment: 24 pages, 7 .jpg figures, submitted to Nucl.Instr.
Isotope correlations as a probe for freeze-out characterization: central 124Sn+64Ni, 112Sn+58Ni collisions
124Sn+64Ni and 112Sn+58Ni reactions at 35 AMeV incident energy were studied
with the forward part of CHIMERA multi-detector. The most central collisions
were selected by means of a multidimensional analysis. The characteristics of
the source formed in the central collisions, as size, temperature and volume,
were inspected. The measured isotopes of light fragments (3 <= Z <=8) were used
to examine isotope yield ratios that provide information on the free neutron to
proton densities.Comment: 4 pages, Contribution to 8th International Conference on
Nucleus-Nucleus Collisions, Moscow 200
The behaviour of inositol 1,3,4,5,6-pentakisphosphate in the presence of the major biological metal cations
The inositol phosphates are ubiquitous metabolites in eukaryotes, of which the most abundant are inositol hexakisphosphate (InsP6) and inositol 1,3,4,5,6-pentakisphosphate [Ins(1,3,4,5,6)P5)]. These two compounds, poorly understood functionally, have complicated complexation and solid formation behaviours with multivalent cations. For InsP6, we have previously described this chemistry and its biological implications (Veiga et al. in J Inorg Biochem 100:1800, 2006; Torres et al. in J Inorg Biochem 99:828, 2005). We now cover similar ground for Ins(1,3,4,5,6)P5, describing its interactions in solution with Na+, K+, Mg2+, Ca2+, Cu2+, Fe2+ and Fe3+, and its solid-formation equilibria with Ca2+ and Mg2+. Ins(1,3,4,5,6)P5 forms soluble complexes of 1:1 stoichiometry with all multivalent cations studied. The affinity for Fe3+ is similar to that of InsP6 and inositol 1,2,3-trisphosphate, indicating that the 1,2,3-trisphosphate motif, which Ins(1,3,4,5,6)P5 lacks, is not absolutely necessary for high-affinity Fe3+ complexation by inositol phosphates, even if it is necessary for their prevention of the Fenton reaction. With excess Ca2+ and Mg2+, Ins(1,3,4,5,6)P5 also forms the polymetallic complexes [M4(H2L)] [where L is fully deprotonated Ins(1,3,4,5,6)P5]. However, unlike InsP6, Ins(1,3,4,5,6)P5 is predicted not to be fully associated with Mg2+ under simulated cytosolic/nuclear conditions. The neutral Mg2+ and Ca2+ complexes have significant windows of solubility, but they precipitate as [Mg4(H2L)]·23H2O or [Ca4(H2L)]·16H2O whenever they exceed 135 and 56 μM in concentration, respectively. Nonetheless, the low stability of the [M4(H2L)] complexes means that the 1:1 species contribute to the overall solubility of Ins(1,3,4,5,6)P5 even under significant Mg2+ or Ca2+ excesses. We summarize the solubility behaviour of Ins(1,3,4,5,6)P5 in straightforward plots
- …