123 research outputs found

    Extremely Fast NADH-Regeneration Using Phosphonic Acid as Hydride Source and Iridium-pyridine-2-sulfonamidate Catalysts

    Get PDF
    NADH is a very well known, high-energy, electron and proton carrier, successfully employed as cofactor in many large-scale biotransformation processes catalyzed by oxidoreductase enzymes. Owing to ..

    Assessing the Role of Counterion in Gold-Catalyzed Dearomatization of Indoles with Allenamides by NMR Studies

    Get PDF
    The counterion effect in the gold(I)-catalyzed dearomative condensation of indoles with allenamides is unveiled by means of 1D- and 2D-NMR investigation. The different coordination ability and hydrogen bonding tendency of TFA– and OTf– led to specific interactions with the reaction partners dictating the regiodivergent outcome

    Comparative NMR study on the reactions of Hf(IV) organometallic complexes with Al/Zn alkyls

    Get PDF
    NMR spectroscopy has been exploited to investigate the reactions of Hf(IV) organometallic complexes with trialkylaluminum and dialkylzinc, with the aim of obtaining insights into the elementary steps of coordinative chain transfer polymerization (CCTP). Bis(cyclopentadienyl)hafnium dimethyl (Cp2HfMe2, 1Me2) and [N-(2,6-diisopropylphenyl)-α-(2-isopropylphenyl)-6-(1-naphthalenyl)-2-pyridinemethanaminato]hafnium dimethyl (2Me2) complexes have been chosen as case studies for understanding the differences between poorly performing and highly active CCTP catalysts, in an attempt to assess the effect of the ancillary ligand on the transalkylation rate. 2Me2 was found to react much more quickly with both AlEt3 and ZnEt2 in comparison to 1Me2, mainly due to a remarkably lower activation enthalpy. In addition, while the ethylation rate was found to depend on the nature of the alkylating agent for 1Me2, it does not for 2Me2. This difference in reactivity was observed also in the case of the ion pairs obtained by reacting 1Me2 and 2Me2 with [CPh3][B(C6F5)4]. For the latter species, NMR indicated that two main deactivation pathways, namely anion decomposition and σ-bond methatesis of Hf–alkyl groups, occur

    A PGSE NMR approach to the characterization of single and multi-site halogen-bonded adducts in solution

    Get PDF
    We demonstrate here that the Pulsed field Gradient Spin Echo (PGSE) NMR diffusion technique can be effectively used as a complementary tool for the characterization of mono- and multi-site intermolecular halogen bonding (XB) in solution. The main advantage of this technique is that it provides the possibility of unambiguously determining the stoichiometry of the supramolecular adduct, information that is particularly important when multi-site molecular systems are studied. As an example, PGSE NMR measurements in chloroform indicate that hexamethylenetetramine (HMTA), a potentially four-site XB acceptor, actually exploits only two sites for the interaction with the XB donor N-bromosuccinimide (NBS), leaving the other two nitrogen sites unoccupied. Charge displacement calculations suggest that this is due also to the anti-cooperativity of the XB interaction between HMTA and NBS

    Heterogenized water oxidation catalysts prepared by immobilizing Klaui-type organometallic precursors

    Get PDF
    An efficient heterogenized water oxidation catalyst (2_TiO2) has been synthesized by immobilizing the KlÀui-type organometallic precursor [Cp*Ir{P(O)(OH)2}3]Na (2, Cp*=1,2,3,4,5-pentamethylcyclopentadienyl ligand) onto rutile TiO2. Iridium is homogeneously distributed at the molecular and atomic/small cluster level in 2_TiO2 and 2'_TiO2 (solid catalyst recovered after the first catalytic run), respectively, as indicated by STEM-HAADF (scanning transmission electron microscopy - high angle annular dark field) studies. 2'_TiO2 exhibits TOF values up to 23.7 min-1 in the oxidation of water to O2 driven by NaIO4 at nearly neutral pH, and a TON only limited by the amount of NaIO4 used, as indicated by multiple run experiments. Furthermore, while roughly 40¿% leaching is observed during the first catalytic run, 2'_TiO2 does not undergo any further leaching even when in contact with strongly basic solutions and completely maintains its activity for thousands of cycles. NMR studies, in combination with ICP-OES (inductively coupled plasma optical emission spectrometry), indicate that the activation of 2_TiO2 occurs through the initial oxidative dissociation of PO43-, ultimately leading to active centers in which a 1:1 P/Ir ratio is present (derived from the removal of two PO43- units) likely missing the Cp* ligand.Peer ReviewedPostprint (author's final draft

    Substantial improvement of pyridine-carbene iridium water oxidation catalysts by a simple methyl-to-octyl substitution

    Get PDF
    The substitution of a methyl to an octyl group in the ancillary triazolylidene ligand—an apparently simple variation—induces a more than 10-fold increase of activity of the corresponding iridium complex in water oxidation catalysis when using cerium(IV) as sacrificial oxidant. Detailed NMR studies suggest that various different molecular species form, all bearing the intact triazolylidene ligand. The octyl substituent is essential for inducing the association of the iridium species, thus generating extraordinarily active multimetallic catalytic sites. Their accessibility and steady-state concentration is critically dependent on the type of sacrificial oxidant and specifically on the cerium ammonium nitrate versus catayst ratio

    Selectively measuring π back-donation in gold(I) complexes by NMR spectroscopy

    Get PDF
    Even though the Dewar-Chatt-Duncanson model has been successfully used by chemists since the 1950s, no experimental methodology is yet known to unambiguously estimate the constituents (donation and back-donation) of a metal-ligand interaction. It is demonstrated here that one of these components, the metal-to-ligand π back-donation, can be effectively probed by NMR measurements aimed at determining the rotational barrier of a C-N bond (ΔHr (≠) ) of a nitrogen acyclic carbene ligand. A large series of gold(I) complexes have been synthesized and analyzed, and it was found that the above experimental observables show an accurate correlation with back-donation, as defined theoretically by the appropriate charge displacement originated upon bond formation. The proposed method is potentially of wide applicability for analyzing the ligand effect in metal catalysts and guiding their design

    H2 activation by zirconaziridinium ions: σ-bond metathesis versus Frustrated Lewis pairs reactivity

    Get PDF
    Zirconaziridinium ions [Cp2Zr(η2-CH2NR2]+ can potentially activate H2 by two routes: σ-bond metathesis, or FLP reactivity. We show here that Zr-C hydrogenolysis by σ-bond metathesis precedes and enables subsequent heterolytic H2 cleavage by FLP pathways. DFT calculations show the involvement of transition states with approximately linear N···H···H and bent Zr···H···H arrangements without any direct Zr-amine interaction

    Hierarchical Self-assembly and Controlled Disassembly of a Cavitand-based Host-Guest Supramolecular Polymer

    Get PDF
    There is a considerable interest in dynamic materials featuring modular components with nano-scale dimensions and controlled responsiveness to external stimuli. Supramolecular polymers are a class of materials that fulfill nicely all these conditions. Here, we present a family of host-guest supramolecular polymers that combine the outstanding complexing properties of tetraphosphonate cavitands toward N-methylpyridinium guests with molecular switching. The designed monomer is a cavitand featuring four inward facing P=O groups at the upper rim and a single N-methylpyridinium unit at the lower rim, forming instantaneously a polymeric species in solution thanks to the high complexation constants measured for these host-guest interactions. This system has been analyzed by NMR spectroscopic and electrochemical techniques. In order to interpret the results of diffusion-sensitive experiments, we took advantage of the X-ray crystal structure obtained for the polymeric species and developed an original treatment of the PGSE data by non-linear fitting. The analysis of the experimental data identified an isodesmic polymerization model at monomer concentration below 20 mM, driven by intrachain host-guest interactions, and an additional level of tetrameric bundle aggregation above 20 mM, due to interchain dipolar and quadrupolar interactions. Two orthogonal disassembly procedures have been implemented: electrochemical reduction for the linear chains and solvent-driven dissolution for the bundles

    Disclosing the multi-faceted world of weakly interacting inorganic systems by means of NMR spectroscopy

    Get PDF
    The potential of NMR spectroscopy to investigate inorganic systems assembled by, or whose reactivity is affected by, non-covalent interactions is described. Subjects that have received particular attention in recent years (halogen bonding and Frustrated Lewis Pairs) and more classical subjects that remain under-explored (self-aggregation of ion pairs in low polar solvents, behavior of MAO containing metallocenium ion pairs, and hydrogen bonding/ion pairing effects in Au(I) catalysis) are considered, using an innovative approach, always focusing on the crucial information that can be provided by NMR
    • 

    corecore