57 research outputs found

    Are Point Mutations in HMG-CoA Reductases (Hmg1 and Hmg2) a Step towards Azole Resistance in Aspergillus fumigatus?

    Get PDF
    Invasive aspergillosis, mainly caused by Aspergillus fumigatus, can lead to severe clinical outcomes in immunocompromised individuals. Antifungal treatment, based on the use of azoles, is crucial to increase survival rates. However, the recent emergence of azole-resistant A. fumigatus isolates is affecting the efficacy of the clinical therapy and lowering the success rate of azole strategies against aspergillosis. Azole resistance mechanisms described to date are mainly associated with mutations in the azole target gene cyp51A that entail structural changes in Cyp51A or overexpression of the gene. However, strains lacking cyp51A modifications but resistant to clinical azoles have recently been detected. Some genes have been proposed as new players in azole resistance. In this study, the gene hmg1, recently related to azole resistance, and its paralogue hmg2 were studied in a collection of fifteen azole-resistant strains without cyp51A modifications. Both genes encode HMG-CoA reductases and are involved in the ergosterol biosynthesis. Several mutations located in the sterol sensing domain (SSD) of Hmg1 (D242Y, G307D/S, P309L, K319Q, Y368H, F390L and I412T) and Hmg2 (I235S, V303A, I312S, I360F and V397C) were detected. The role of these mutations in conferring azole resistance is discussed in this work.This research was funded by Fondo de Investigacion Sanitaria (FIS PI18CIII/00045) and also by Plan Nacional de I+D+i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), co-financed by European Development Regional Fund ERDF “A way to achieve Europe”, Operative program Intelligent Growth 2014–2020.S

    Point Mutations in the 14-α Sterol Demethylase Cyp51A or Cyp51C Could Contribute to Azole Resistance in Aspergillus flavus.

    Get PDF
    Infections caused by Aspergillus species are being increasingly reported. Aspergillus flavus is the second most common species within this genus causing invasive infections in humans, and isolates showing azole resistance have been recently described. A. flavus has three cyp51-related genes (cyp51A, cyp51B, and cyp51C) encoding 14-α sterol demethylase-like enzymes which are the target of azole drugs. In order to study triazole drug resistance in A. flavus, three strains showing reduced azole susceptibility and 17 azole susceptible isolates were compared. The three cyp51-related genes were amplified and sequenced. A comparison of the deduced Cyp51A, Cyp51B, and Cyp51C protein sequences with other protein sequences from orthologous genes in different filamentous fungi led to a protein identity that ranged from 50% to 80%. Cyp51A and Cyp51C presented several synonymous and non-synonymous point mutations among both susceptible and non-susceptible strains. However, two amino acid mutations were present only in two resistant isolates: one strain harbored a P214L substitution in Cyp51A, and another a H349R in Cyp51C that also showed an increase of cyp51A and cyp51C gene expression compared to the susceptible strain ATCC2004304. Isolates that showed reduced in vitro susceptibility to clinical azoles exhibited a different susceptibility profile to demethylation inhibitors (DMIs). Although P214L substitution might contribute to azole resistance, the role of H349R substitution together with changes in gene expression remains unclear.This research was funded by Fondo de Investigacion Sanitaria (FIS PI18CIII/00045) and also by Plan Nacional de I+D+i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), co-financed by European Development Regional Fund ERDF “A way to achieve Europe”, Operative program Intelligent Growth 2014-2020. J.L. holds a predoctoral fellowship from the Fondo de Investigación Sanitaria (F17CIII/00037).S

    The fungal expel of 5-fluorocytosine derived fluoropyrimidines mitigates its antifungal activity and generates a cytotoxic environment

    Get PDF
    Invasive aspergillosis remains one of the most devastating fungal diseases and is predominantly linked to infections caused by the opportunistic human mold pathogen Aspergillus fumigatus. Major treatment regimens for the disease comprise the administration of antifungals belonging to the azole, polyene and echinocandin drug class. The prodrug 5-fluorocytosine (5FC), which is the only representative of a fourth class, the nucleobase analogs, shows unsatisfactory in vitro activities and is barely used for the treatment of aspergillosis. The main route of 5FC activation in A. fumigatus comprises its deamination into 5-fluorouracil (5FU) by FcyA, which is followed by Uprt-mediated 5FU phosphoribosylation into 5-fluorouridine monophosphate (5FUMP). In this study, we characterized and examined the role of a metabolic bypass that generates this nucleotide via 5-fluorouridine (5FUR) through uridine phosphorylase and uridine kinase activities. Resistance profiling of mutants lacking distinct pyrimidine salvage activities suggested a minor contribution of the alternative route in 5FUMP formation. We further analyzed the contribution of drug efflux in 5FC tolerance and found that A. fumigatus cells exposed to 5FC reduce intracellular fluoropyrimidine levels through their export into the environment. This release, which was particularly high in mutants lacking Uprt, generates a toxic environment for cytosine deaminase lacking mutants as well as mammalian cells. Employing the broad-spectrum fungal efflux pump inhibitor clorgyline, we demonstrate synergistic properties of this compound in combination with 5FC, 5FU as well as 5FUR.This research was funded by the Austrian Science Fund (FWF), grant P31093 to F.G. and M2867 to C.B. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S

    TREM1 regulates antifungal immune responses in invasive pulmonary aspergillosis.

    Get PDF
    Pattern recognition receptors (PRRs) are responsible for Aspergillus fumigatus recognition by innate immunity and its subsequent immune signaling. The triggering receptor expressed on myeloid cells 1 (TREM1) is a recently characterized pro-inflammatory receptor constitutively expressed on the surface of neutrophils and macrophages. A soluble form (sTREM1) of this protein that can be detected in human body fluids has been identified. Here we investigated the role of TREM1 during invasive pulmonary aspergillosis (IPA). IPA patients displayed significantly higher levels of sTREM1 in bronchoalveolar lavages when compared to control patients. Functional analysis in TREM1 showed that the levels of sTREM1 and TREM1 pathway-related cytokines were influenced by single nucleotide polymorphisms in TREM1. In addition, we confirmed a role of TREM1 on antifungal host defense against A. fumigatus in a murine model of IPA. TREM1 deficiency increased susceptibility to infection in the immunosuppressed murine host. Deletion of TREM1 showed delayed innate and adaptive immune responses and impaired pro-inflammatory cytokine responses. The absence of TREM1 in primary macrophages attenuated the TLR signaling by altering the expression of both receptor and effector proteins that are critical to the response against A. fumigatus. In this study, and for the first time, we demonstrate the key role for the TREM1 receptor pathway during IPA.This work was supported by the Fundação para a Ciência e a Tecnologia [PTDC/SAU-SER/29635/2017]; Fundação para a Ciência e a Tecnologia [UIDB/50026/2020 and UIDP/50026/2020]; Fundação para a Ciência e a Tecnologia [PTDC/MED-GEN/28778/2017]; H2020 Excellent Science [NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023)]; Instituto de Salud Carlos III [RD16/CIII/0004/0003]; Instituto de Salud Carlos III [PI18CIII/00045]; Instituto de Salud Carlos III [MPY 1277/15]; Ministerio de Ciencia, Innovación y Universidades [RTI2018-099114-B-I00]; Associação Viver a Ciência (PT) [SFRH/BD/136814/2018]; “la Caixa” Foundation [ID 100010434].S

    The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis

    Get PDF
    Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Raw data have been deposited in the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE54810. Funding: This work was supported in part by grants to EMB from the MRC (G0501164) and BBSRC (BB/G009619/1), to EMB and NDR from the Wellcome Trust (WT093596MA), to MB from Imperial College London (Division of Investigative Sciences PhD Studentship), to HH from the ERA-NET PathoGenoMics project TRANSPAT, Austrian Science Foundation (FWF I282-B09), to SGF from the National Institutes of Health, USA (R01AI073829). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Clinical, epidemiological, and mycological features of patients with candidemia: Experience in two tertiary referral centers in Iran

    Get PDF
    Background and purpose: Candidemia is a major cause of morbidity and mortality among patients receiving immunosuppressive therapy and those hospitalized with serious underlying diseases. Here, we investigated the epidemiological, clinical, and mycological features of candidemia in Tehran, Iran. Materials and methods: A prospective observational study of all patients diagnosed with candidemia was performed at two referral teaching hospitals in Tehran, Iran, from February to December 2018. Demographic characteristics, underlying diseases, risk factors, clinical symptoms, and laboratory analyses of candidemic patients with positive culture were mined. Candida isolates were molecularly identified by sequencing of the internal transcribed spacer region (ITS1-5.8S-ITS2). The antifungal susceptibility testing for fluconazole, itraconazole, voriconazole, posaconazole, amphotericin B, caspofungin, micafungin, and anidulafungin against the isolates was performed using CLSI broth microdilution reference method (M27-A3). Results: A total of 89 episodes were identified, with an incidence of 2.1 episodes/1000 admissions. The common underling disease were malignancy (46%), renal failure/dialysis (44%), and hypertension (40%). The overall crude mortality was 47%. C. albicans (44%) was the most frequent causative agent, followed by C. glabrata (21%), C. parapsilosis complex (15%), C. tropicalis (11%), and C. lusitaniae (3.5%). All the isolates were susceptible to amphotericin B. The activity of all four azoles was low against non-albicans Candida species, especially C. tropicalis. Conclusion: The increase in non-albicans Candida species with reduced susceptibility to antifungal drugs might be alarming in high-risk patients. Therefore, accurate knowledge of predisposing factors and epidemiological patterns in candidemia are effective steps for managing and decreasing the mortality rate in candidemia.This study has been funded and supported by Tehran University of Medical Sciences, Tehran, Iran (Grant no. 99-2-99-48944).S

    Polymorphisms within the TNFSF4 and MAPKAPK2 Loci influence the risk of developing invasive aspergillosis: A two-stage case control study in the context of the aspBIOmics consortium

    Get PDF
    Here, we assessed whether 36 single nucleotide polymorphisms (SNPs) within the TNFSF4 and MAPKAPK2 loci influence the risk of developing invasive aspergillosis (IA). We conducted a two-stage case control study including 911 high-risk patients diagnosed with hematological malignancies that were ascertained through the aspBIOmics consortium. The meta-analysis of the discovery and replication populations revealed that carriers of the TNFSF4rs7526628T/T genotype had a significantly increased risk of developing IA (p = 0.00022). We also found that carriers of the TNFSF4rs7526628T allele showed decreased serum levels of TNFSF14 protein (p = 0.0027), and that their macrophages had a decreased fungicidal activity (p = 0.048). In addition, we observed that each copy of the MAPKAPK2rs12137965G allele increased the risk of IA by 60% (p = 0.0017), whereas each copy of the MAPKAPK2rs17013271T allele was estimated to decrease the risk of developing the disease (p = 0.0029). Mechanistically, we found that carriers of the risk MAPKAPK2rs12137965G allele showed increased numbers of CD38+IgM-IgD- plasmablasts in blood (p = 0.00086), whereas those harboring two copies of the allele had decreased serum concentrations of thymic stromal lymphopoietin (p = 0.00097). Finally, we also found that carriers of the protective MAPKAPK2rs17013271T allele had decreased numbers of CD27-IgM-IgD- B cells (p = 0.00087) and significantly lower numbers of CD14+ and CD14+CD16- cells (p = 0.00018 and 0.00023). Altogether, these results suggest a role of the TNFSF4 and MAPKAPK2 genes in determining IA risk.This study was supported by grants PI20/01845, PI12/02688, and ISCIII-FEDER PI17/02276 from Fondo de Investigaciones Sanitarias (Madrid, Spain), PIM2010EPA-00756 from the ERA-NET PathoGenoMics (0315900A), the Collaborative Research Center/Transregio 124 FungiNet, the Fundacao para a Ciencia e Tecnologia (FCT) (PTDC/SAU-SER/29635/2017, PTDC/MED-GEN/28778/2017, CEECIND/03628/2017, and CEECIND/04058/2018), the European Union's Horizon 2020 research and innovation programme under grant agreement no. 847507, and the "la Caixa" Foundation (ID 100010434) and FCT under the agreement LCF/PR/HP17/52190003)

    HacA-Independent Functions of the ER Stress Sensor IreA Synergize with the Canonical UPR to Influence Virulence Traits in Aspergillus fumigatus

    Get PDF
    Endoplasmic reticulum (ER) stress is a condition in which the protein folding capacity of the ER becomes overwhelmed by an increased demand for secretion or by exposure to compounds that disrupt ER homeostasis. In yeast and other fungi, the accumulation of unfolded proteins is detected by the ER-transmembrane sensor IreA/Ire1, which responds by cleaving an intron from the downstream cytoplasmic mRNA HacA/Hac1, allowing for the translation of a transcription factor that coordinates a series of adaptive responses that are collectively known as the unfolded protein response (UPR). Here, we examined the contribution of IreA to growth and virulence in the human fungal pathogen Aspergillus fumigatus. Gene expression profiling revealed that A. fumigatus IreA signals predominantly through the canonical IreA-HacA pathway under conditions of severe ER stress. However, in the absence of ER stress IreA controls dual signaling circuits that are both HacA-dependent and HacA-independent. We found that a ΔireA mutant was avirulent in a mouse model of invasive aspergillosis, which contrasts the partial virulence of a ΔhacA mutant, suggesting that IreA contributes to pathogenesis independently of HacA. In support of this conclusion, we found that the ΔireA mutant had more severe defects in the expression of multiple virulence-related traits relative to ΔhacA, including reduced thermotolerance, decreased nutritional versatility, impaired growth under hypoxia, altered cell wall and membrane composition, and increased susceptibility to azole antifungals. In addition, full or partial virulence could be restored to the ΔireA mutant by complementation with either the induced form of the hacA mRNA, hacAi, or an ireA deletion mutant that was incapable of processing the hacA mRNA, ireAΔ10. Together, these findings demonstrate that IreA has both HacA-dependent and HacA-independent functions that contribute to the expression of traits that are essential for virulence in A. fumigatus

    Amino acid biosynthetic pathways as antifungal targets for fungal infections

    Get PDF
    Aspergillus fumigatus is an opportunistic pathogen and ubiquitous in the environment. In humans, A. fumigatus can cause a wide range of infections whose symptoms are directly determined by the immunological status of the host. 1 Superficial infections are related to local trauma or overgrowth of the fungus in burns; under occlusive dressings; after corneal trauma (keratitis); or in the sinuses, mouth, nose, or ear canal. Allergic forms of the diseases are caused by an exaggerated response of the immune system to colonization of the airways with Aspergillus . In addition, invasive aspergillosis (IA), usu- ally acquired through inhalation of conidia and further fungal growth in the lung, is a systemic infection that affects immunosuppressed patients. IA represents one of the main cause of morbidity and mortality for infection complications in patients with hematological malignan- cies, hemopoietic stem cell and solid organ recipients and patients with other immunodeficiencies.L. A.-F. has received funding from Fondo Investigacion Sanitaria grant no. FIS: PI14CIII/00053.S

    Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance

    Get PDF
    Ergosterol, the major sterol of fungal membranes, is essential for developmental growth and the main target of antifungals that are currently used to treat fatal fungal infections. Emergence of resistance to existing antifungals is a current problem and several secondary resistance mechanisms have been described in Aspergillus fumigatus clinical isolates. A full understanding of ergosterol biosynthetic control therefore appears to be essential for improvement of antifungal efficacy and to prevent antifungal resistance. An ergosterol biosynthesis pathway in A. fumigatus has been proposed with 14 sterol intermediates resulting in ergosterol and another secondary final compound C-24 ethyl sterol. Transcriptomic analysis of the A. fumigatus response to host-imposed stresses or antifungal agents is expanding our understanding of both sterol biosynthesis and the modes of action of antifungal drugs. Ultimately, the identification of new targets for novel drug design, or the study of combinatorial effects of targeting sterol biosynthesis together with other metabolic pathways, is warranted
    corecore