206 research outputs found

    SARS-CoV-2 variants and their relevant mutational profiles: update summer 2021

    Get PDF
    : Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic caused by it, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been undergoing a genetic diversification leading to the emergence of new variants. Nevertheless, a clear definition of the genetic signatures underlying the circulating variants is still missing. Here, we provide a comprehensive insight into mutational profiles characterizing each SARS-CoV-2 variant, focusing on spike mutations known to modulate viral infectivity and/or antigenicity. We focused on variants and on specific relevant mutations reported by GISAID, Nextstrain, Outbreak.info, Pango, and Stanford database websites that were associated with any clinical/diagnostic impact, according to published manuscripts. Furthermore, 1,223,338 full-length high-quality SARS-CoV-2 genome sequences were retrieved from GISAID and used to accurately define the specific mutational patterns in each variant. Finally, mutations were mapped on the three-dimensional structure of the SARS-CoV-2 spike protein to assess their localization in the different spike domains. Overall, this review sheds light and assists in defining the genetic signatures characterizing the currently circulating variants and their clinical relevance. IMPORTANCE Since the emergence of SARS-CoV-2, several recurrent mutations, particularly in the spike protein, arose during human-to-human transmission or spillover events between humans and animals, generating distinct worrisome variants of concern (VOCs) or of interest (VOIs), designated as such due to their clinical and diagnostic impacts. Characterizing these variants and their related mutations is important in tracking SAR-CoV-2 evolution and understanding the efficacy of vaccines and therapeutics based on monoclonal antibodies, convalescent-phase sera, and direct antivirals. Our study provides a comprehensive survey of the mutational profiles characterizing the important SARS-CoV-2 variants, focusing on spike mutations and highlighting other protein mutations

    Indole and 2,4-Thiazolidinedione conjugates as potential anticancer modulators

    Get PDF
    Background. Thiazolidinediones (TZDs), also called glitazones, are five-membered carbon ring molecules commonly used for the management of insulin resistance and type 2 diabetes. Recently, many prospective studies have also documented the impact of these compounds as anti-proliferative agents, though several negative side effects such as hepatotoxicity, water retention and cardiac issues have been reported. In this work, we synthesized twenty-six new TZD analogues where the thiazolidinone moiety is directly connected to an N-heterocyclic ring in order to lower their toxic effects. Methods. By adopting a widely applicable synthetic method, twenty-sixTZDderivatives were synthesized and tested for their antiproliferative activity in MTT and Wound healing assays with PC3 (prostate cancer) and MCF-7 (breast cancer) cells. Results. Three compounds, out of twenty-six, significantly decreased cellular viability and migration, and these effects were even more pronounced when compared with rosiglitazone, a well-known member of the TZD class of antidiabetic agents. As revealed by Western blot analysis, part of this antiproliferative effect was supported by apoptosis studies evaluating BCL-xL and C-PARP protein expression. Conclusion. Our data highlight the promising potential of these TZD derivatives as anti-proliferative agents for the treatment of prostate and breast cancer

    Different evolution of genotypic resistance profiles to emtricitabine versus lamivudine in tenofovir-containing regimens.

    Get PDF
    BACKGROUND: To investigate genotypic resistance profiles to emtricitabine + tenofovir (FTC + TDF) in-vivo and in-vitro, and compare them with lamivudine + tenofovir (3TC + TDF). METHODS: Three hundred fifty-two HIV-1 B-subtype pol sequences from 42 FTC + TDF-treated patients, 40 3TC + TDF-treated patients, and 270 patients treated with 3TC plus another nucleoside reverse transcriptase inhibitor (but not TDF). All patients never received FTC, 3TC, and TDF in their previous therapeutic regimen. 3TC/FTC ± TDF resistance was investigated using in vitro selection experiments and docking simulations. RESULTS: The M184V mutation is less prevalent in FTC + TDF-treated patients than in 3TC + TDF-treated, and 3TC-treated/TDF-naive patients (14.3% versus 40.0%, P = 0.01 and 55.6%, P < 0.001). Multivariable analysis shows that factors correlated with a lower probability of M184V emergence at failure were the use of FTC compared with 3TC [odds ratio (OR): 0.32 (95% confidence interval (CI): 0.10 to 0.99), P = 0.04], the use of boosted protease inhibitor, and the use of TDF [OR: 0.20 (95% CI: 0.11 to 0.37), P < 0.001, and OR: 0.47 (95%CI: 0.22 to 1.01), P = 0.05, respectively]. In vitro selection experiments and docking analysis show that other reverse transcriptase (RT) mutations, even localized in RT connection domain, can be selected by 3TC + TDF or FTC + TDF in M184V absence and can affect RT affinity for 3TC/FTC and/or TDF. CONCLUSIONS: Our study shows lower rates of M184V development in FTC + TDF regimens versus 3TC + TDF and suggests a potential role of boosted protease inhibitors and TDF in delaying the M184V emergence. Novel RT mutational patterns, more complex than currently known, can contribute to 3TC, FTC, and TDF resistance

    The glycopeptide CSF114(Glc) detects serum antibodies in multiple sclerosis.

    Get PDF
    Synthetic glycopeptides have the potential to detect antibodies in multiple sclerosis (MS). In the present study, we analyzed the antibodies (IgM class, IgG class and IgG subclasses) to the synthetic glycopeptide CSF114(Glc) in the serum of 186 MS patients, 166 blood donors (BDs), 25 patients affected by meningitis/encephalitis, 41 affected by systemic lupus erythematosus (SLE) and 49 affected by rheumatoid arthritis (RA). The IgM antibody level to CSF114(Glc) was significantly increased in MS patients versus BDs (p<0.001) or versus other autoimmune diseases (SLE or RA, p<0.001). The IgG response was restricted to the subclass IgG2. IgM antibodies to CSF114(Glc) were found in 30% of relapsing/remitting MS patients and, at lower levels, in subjects affected by meningitis/encephalitis. The study of antibodies to CSF114(Glc) is a new, potential immunological marker of MS

    Novel compounds targeting the RNA-binding protein HuR : Structure-based design, synthesis and interaction studies

    Get PDF
    The key role of RNA-binding proteins (RBPs) in regulating post-transcriptional processes and their involvement in several pathologies (i.e., cancer and neurodegeneration) have highlighted their potential as therapeutic targets. In this scenario, Embryonic Lethal Abnormal Vision (ELAV) or Hu proteins and their complexes with target mRNAs have been gaining growing attention. Compounds able to modulate the complex stability could constitute an innovative pharmacological strategy for the treatment of numerous diseases. Nevertheless, medicinal-chemistry efforts aimed at developing such compounds are still at an early stage. As part of our ongoing research in this field, we hereby present the rational design and synthesis of structurally novel HuR ligands, potentially acting as HuR-RNA interferers. The following assessment of the structural features of their interaction with HuR, combining saturation-transfer difference NMR and in silico studies, provides a guide for further research on the development of new effective interfering compounds of the HuR-RNA complex

    Riluzole-Rasagiline Hybrids: Toward the Development of Multi-Target-Directed Ligands for Amyotrophic Lateral Sclerosis

    Get PDF
    Polypharmacology is a new trend in amyotrophic lateral sclerosis (ALS) therapy and an effective way of addressing a multifactorial etiology involving excitotoxicity, mitochondrial dysfunction, oxidative stress, and microglial activation. Inspired by a reported clinical trial, we converted a riluzole (1)-rasagiline (2) combination into single-molecule multi-target-directed ligands. By a ligand-based approach, the highly structurally integrated hybrids 3-8 were designed and synthesized. Through a target- and phenotypic-based screening pipeline, we identified hit compound 6. It showed monoamine oxidase A (MAO-A) inhibitory activity (IC50 = 6.9 mu M) rationalized by in silico studies as well as in vitro brain permeability. By using neuronal and non-neuronal cell models, including ALS-patient-derived cells, we disclosed for 6 a neuroprotective/neuroinflammatory profile similar to that of the parent compounds and their combination. Furthermore, the unexpected MAO inhibitory activity of 1 (IC50 = 8.7 mu M) might add a piece to the puzzle of its anti-ALS molecular profile

    The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group

    Get PDF
    The simultaneous intake of food and drugs can have a strong impact on drug release, absorption, distribution, metabolism and/or elimination and consequently, on the efficacy and safety of pharmacotherapy. As such, food-drug interactions are one of the main challenges in oral drug administration. Whereas pharmacokinetic (PK) food-drug interactions can have a variety of causes, pharmacodynamic (PD) food-drug interactions occur due to specific pharmacological interactions between a drug and particular drinks or food. In recent years, extensive efforts were made to elucidate the mechanisms that drive pharmacokinetic food-drug interactions. Their occurrence depends mainly on the properties of the drug substance, the formulation and a multitude of physiological factors. Every intake of food or drink changes the physiological conditions in the human gastrointestinal tract. Therefore, a precise understanding of how different foods and drinks affect the processes of drug absorption, distribution, metabolism and/or elimination as well as formulation performance is important in order to be able to predict and avoid such interactions. Furthermore, it must be considered that beverages such as milk, grapefruit juice and alcohol can also lead to specific food-drug interactions. In this regard, the growing use of food supplements and functional food requires urgent attention in oral pharmacotherapy. Recently, a new consortium in Understanding Gastrointestinal Absorption-related Processes (UNGAP) was established through COST, a funding organisation of the European Union supporting translational research across Europe. In this review of the UNGAP Working group "Food-Drug Interface", the different mechanisms that can lead to pharmacokinetic food-drug interactions are discussed and summarised from different expert perspectives

    Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage

    Get PDF
    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-Vif(WT) virus (i.e., with wildtype [WT] Vif protein), 81.A-Vif(E4SG), or 81.A-Vif(K22E) (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-Vif(WT) and 81.A-Vif(E45G) -infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-Vif(K22E)-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e-7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, -40.1 kcal/mol; G24E, -510 kcal/mol; E25K, -522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression
    • …
    corecore