13 research outputs found

    Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles

    No full text
    International audienceOver the last few decades, nanoparticles have been studied in theranostic field with the objective of exhibiting a long circulation time through the body coupled to major accumulation in tumor tissues, rapid elimination, therapeutic potential and contrast properties. In this context, we developed sub-5 nm gadolinium-based nanoparticles that possess in vitro efficient radiosensitizing effects at moderate concentration when incubated with head and neck squamous cell carcinoma cells (SQ20B). Two main cellular internalization mechanisms were evidenced and quantified: passive diffusion and macropinocytosis. Whereas the amount of particles internalized by passive diffusion is not sufficient to inducein vitro a significant radiosensitizing effect, the cellular uptake by macropinocytosis leads to a successful radiotherapy in a limited range of particles incubation concentration. Macropinocytosis processes in two steps: formation of agglomerates at vicinity of the cell followed by their collect via the lamellipodia (i.e. the "arms") of the cell. The first step is strongly dependent on the physicochemical characteristics of the particles, especially their zeta potential that determines the size of the agglomerates and their distance from the cell. These results should permit to control the quantity of particles internalized in the cell cytoplasm, promising ambitious opportunities towards a particle-assisted radiotherapy using lower radiation doses

    Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance

    Get PDF
    The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe2O4-10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe2O4 nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe2O4/PSS bilayers (n) and/or by changing the CoFe2O4 nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe2O4 nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe2O4 nanoparticles while growing multilayers of CoFe2O4/PSS was conducted using colloidal suspensions with CoFe2O4 concentration in the range of 10-8 to 10-6 (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe2O4 nanoparticles within the CoFe2O4/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe2O4 nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film thickness increasing from about 20 to 120 nm while shifting from 3 to 10 CoFe2O4/PSS bilayers, using the 8.9 × 10-6 (moles of cobalt ferrite per litre) suspension.MCT/CNPqFINEPCAPESFUNAPEFINATE

    Algoritmo Paralelo para Morfismo de Imagem em Arquitetura Multinúcleo

    No full text
    Este artigo aborda a paralelização do algoritmo clássico demorfismo de imagens baseado em malha deformável. Devido às suas características, este algoritmo demanda intenso processamento computacional. Por outro lado, tem havido uma popularização de computadores multinúcleo oferecendo uma relação proveitosa entre custo e poder computacional. O objetivo deste trabalho é demonstrar o potencial de uma proposta de paralelismo, para um algoritmo clássico de morfismo, utilizando uma arquitetura multinúcleo popular e a linguagem Python. Foram realizados experimentos e discutidos seus resultados

    Dielectric properties of cobalt ferrite nanoparticles in ultrathin nanocomposite films

    No full text
    Multilayered nanocomposite films (thickness 50-90 nm) of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm) were deposited on top of interdigitated microelectrodes by the layer-by-layer technique in order to study their dielectric properties. For that purpose, two different types of nanocomposite films were prepared by assembling np-CoFe2O4 either with poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonic acid) or with polyaniline and sulfonated lignin. Despite the different film architectures, the morphology of both was dominated by densely-packed layers of nanoparticles surrounded by polyelectrolytes. The dominant effect of np-CoFe2O4 was also observed after impedance spectroscopy measurements, which revealed that dielectric behavior of the nanocomposites was largely influenced by the charge transport across nanoparticle-polyelectrolyte interfaces. For example, nanocomposites containing np-CoFe2O4 exhibited a single low-frequency relaxation process, with time constants exceeding 15 ms. At 1 kHz, the dielectric constant and the dissipation factor (tan ᵟ) of these nanocomposites were 15 and 0.15, respectively. These values are substantially inferior to those reported for pressed pellets made exclusively of similar nanoparticles. Impedance data were further fitted with equivalent circuit models from which individual contributions of particle's bulk and interfaces to the charge transport within the nanocomposites could be evaluated. The present study evidences that such nanocomposites display a dielectric behavior dissimilar from that exhibited by their individual counterparts much likely due to enlarged nanoparticle- polyelectrolyte interfaces.MCTI / CNPqCAPESFAPDFFAPES

    Layer-by-Layer assembled cobalt ferrite nanoparticles for chemical sensing

    No full text
    Ultra-thin (thicknesses of 50-90 nm) nanocomposite films of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm in diameter) and polyelectrolytes (doped polyaniline-PANI, poly-3,4-ethylenedioxy thiophene: polystyrene sulfonic acid-PEDOT:PSS, and sulfonated lignin-SL) are assembled layer-by-layer onto interdigitated microelectrodes aiming at to create novel nanostructured sensoactive materials for liquid media chemical sensors. The nanocomposites display a distinctive globular morphology with nanoparticles densely-packed while surrounded by polyelectrolytes. Due to the presence of np-CoFe2O4 the nanocomposites display low electrical conductivity according to impedance data. On the other hand, this apparent shortcoming turns such nanocomposites much more sensitive to the presence of ions in solution than films made exclusively of conducting polyelectrolytes. For example, the electrical resistance of np-CoFe2O4/PEDOT:PSS and PANI/SL/np-CoFe2O4/SL architectures has a 10-fold decrease when they are immersed in 20 mmol. L-1 NaCl solution. Impedance spectra fitted with the response of an equivalent circuit model suggest that the interface created between nanoparticles and polyelectrolytes plays a major role on the nanocomposites electrical/dielectrical behavior. Since charge transport is sensitive to nanoparticle-polyelectrolyte interfaces as well as to the physicochemical conditions of the environment, the np-CoFe2O4-based nanocomposites can be used as sensing elements in chemical sensors operated under ac regime and room temperature.MCTI - CNPQCAPESFAPDFFAPES

    Improved efficacy of naproxen-loaded NLC for temporomandibular joint administration

    No full text
    Inflammatory conditions of the temporomandibular joint (TMJ) and peripheral tissues affect many people around the world and are commonly treated with non-steroidal anti-inflammatory drugs (NSAIDs). However, in order to get desirable results, treatments with NSAIDs may take weeks, causing undesirable side effects and requiring repeated administration. In this sense, this work describes the development of an optimized nanostructured lipid carrier (NLC) formulation for intra-articular administration of naproxen (NPX). An experimental design (2(3)) selected the best formulation in terms of its physicochemical and structural properties, elucidated by different methods (DLS, NTA, TEM, DSC, and ATR-FTIR). The chosen formulation (NLC-NPX) was tested on acute inflammatory TMJ nociception, in a rat model. The optimized excipients composition provided higher NPX encapsulation efficiency (99.8%) and the nanoparticles were found stable during 1 year of storage at 25 degrees C. In vivo results demonstrated that the sustained delivery of NPX directly in the TMJ significantly reduced leukocytes migration and levels of pro-inflammatory cytokines (IL-1 beta and TNF-alpha), for more than a week. These results point out the NLC-NPX formulation as a promising candidate for the safe treatment of inflammatory pain conditions of TMJ or other joints9FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP13/10766-0; 14/14457-

    Risk Burden of Coronary Perforation in Chronic Total Occlusion Recanalization: Latin American CTO Registry Analysis

    No full text
    Background Coronary perforation is a life-threatening complication of acute percutaneous coronary intervention (PCI) for chronic total occlusions (CTO), but data on midterm outcomes are limited. Methods and Results Data from LATAM (Latin American)-CTO Registry (57 centers; 9 countries) were analyzed. We assessed the risk of 30-day, 1-year major adverse cardiac events of coronary perforation using time-to-event and weighted composite end point analysis having CTO PCI without perforation as comparators. Additionally, we studied the independent predictors of perforation in these patients. Of 2054 patients who underwent CTO PCI between 2015 and 2018, the median Multicenter CTO Registry in Japan and Prospective Global Registry for the Study of Chronic Total Occlusion Intervention-Chronic total occlusions scores were 2.0 (1.0-3.0) and 1.0 (0.0-2.0), respectively. The perforation rate was 3.7%, of which 55% were Ellis class 1. After 1-year coronary perforation had higher major adverse cardiac events rates (24.9% versus 13.3%; P<0.01). Using weighted composite end point, perforation was associated with increased bleeding and ischemic events at 6 months (P=0.04) and 1 year (P<0.01). We found as independent predictors associated with coronary perforation during CTO PCI: maximum activated clotting time (P<0.01), Multicenter CTO Registry in Japan score ≥2 (P=0.05), antegrade knuckle wire (P=0.04), and right coronary artery CTO PCI (P=0.05). Conclusions Coronary perforation was infrequent and associated with anatomical and procedural complexity, resulting in higher risk of hemorrhagic and ischemic events. Landmark and weighted analysis showed a sustained burden of major events between 6 months and 1 year follow-u

    Suggestive association between variants in IL1RAPL and asthma symptoms in Latin American children.

    No full text
    Several genome-wide association studies have been conducted to investigate the influence of genetic polymorphisms in the development of allergic diseases, but few of them have included the X chromosome. The aim of present study was to perform an X chromosome-wide association study (X-WAS) for asthma symptoms. The study included 1307 children of which 294 were asthma cases. DNA was genotyped using 2.5 HumanOmni Beadchip from Illumina. Statistical analyses were performed in PLINK 1.9, MACH 1.0 and Minimac2. The variant rs12007907 (g.29483892C>A) in IL1RAPL gene was suggestively associated with asthma symptoms in discovery set (odds ratio (OR)=0.49, 95% confidence interval (CI): 0.37-0.67; P=3.33 × 10-6). This result was replicated in the ProAr cohort in men only (OR=0.45, 95% CI: 0.21-0.95; P=0.038). Furthermore, investigating the functional role of the rs12007907 on the production a Th2-type cytokine, IL-13, we found a negative association between the minor allele A with IL-13 production in the discovery set (P=0.044). Gene-based analysis revealed that NUDT10 was the most consistently associated with asthma symptoms in discovery sample. In conclusion, the rs12007907 variant in IL1RAPL gene was negatively associated with asthma and IL-13 production in our study and a sex-specific association was observed in one of the validation samples. It suggests an effect on asthma susceptibility and may explain differences in severe asthma frequency between women and men
    corecore