7 research outputs found

    Eficiência simbiótica de progenitores de cultivares brasileiras de feijão-caupi

    No full text
    Devido à variabilidade das leguminosas quanto à eficiência da fixação biológica de nitrogênio (FBN), tem sido enfatizada a importância do melhoramento genético vegetal no favorecimento da fixação do nitrogênio. Este estudo teve como objetivo avaliar a eficiência simbiótica de progenitores de cultivares brasileiras de feijão-caupi e dar suporte científico à inclusão da FBN ao programa de melhoramento genético da cultura do feijão-caupi no Brasil. O experimento foi conduzido em Teresina, Piauí. Utilizou-se delineamento experimental em blocos casualizados em esquema fatorial 6 x 5, com três repetições, sendo seis fontes de N: quatro estirpes de bactérias diazotróficas (BR 3267, BR 3299, BR 3262 e INPA 03-11B), um tratamento com nitrogênio mineral e outro sem inoculação e sem N; e cinco genótipos de feijão-caupi: quatro progenitores (TVu 1190, Pitiúba, CNC 0434 e Alagoano) e uma cultivar (BRS Guariba). Na análise de variância utilizou-se software SAS e as médias foram comparadas pelo teste Tukey. O progenitor Alagoano destacou-se dos demais em eficiência de nodulação, foi superior ao Pitiúba em massa seca de nódulos e diferiu do TVu 1190 em nitrogênio acumulado na parte aérea. Para nitrogênio derivado da fixação biológica verificou-se uma variação média de 49,42 a 65,50%. Nos componentes de produção, o Alagoano se destacou em massa de vagem, comprimento de vagem e massa de 100 sementes. Concluiu-se que os progenitores avaliados são responsivos a FBN e que há indícios de especificidade entre os progenitores e as estirpes de rizóbio. O progenitor Alagoano apresenta resultados mais promissores nos componentes de nodulação e produção

    Dose ótima econômica de nitrogênio e folha diagnóstica para avaliação do estado nutricional do feijão-caupi

    Get PDF
    Considering that crop nutrition is essential to obtain high yields, the objective of this study was to determine the optimal economical dose of nitrogen (N) associated with maximum technical and economical yield. Additionally, to correlate cowpea cultivars with N contents and yield. The experiment was conducted under the edaphoclimatic conditions of Teresina, PI, Brazil, in Entisol (Fluvic Neosol), in the second half of 2017, in a randomized block design in a factorial scheme (2x2x5), whose factors were: (i) cowpea genotypes (BRS Imponente and BRS Itaim), (ii) form of application of N fertilization (basal + top-dressing or fully top-dressing) and (iii) N doses (zero, 10, 30, 50 and 70 kg ha-1 - urea as source). The variables measured were the total N content in the plant tissue, with a collection of leaves +1 and +3, and grain yield. When analyzing the effect of the interaction, there was significance only for the factors form of application and N doses. However, when the doses were further analyzed for each form of N fertilization, the best response model was the quadratic, whose point of maximum physical yield was verified with N doses of 34 and 44 kg ha-1 for basal + top-dressing and fully top-dressing applications, respectively. Furthermore, the most economical doses for basal + top-dressing and fully top-dressing N applications were 26.0 and 35.6 kg ha-1, respectively. For N, the leaf that best represents the nutritional status for leaf diagnosis was +3.Considerando que a nutrição da cultura é preponderante para obtenção de elevadas produtividades, objetivou-se determinar a dose ótima econômica de N associada à máxima produtividade técnica e econômica. Adicionalmente, realizar correlações entre cultivares de feijão-caupi com os teores de N e a produtividade. O experimento foi conduzido nas condições edafoclimáticas de Teresina, PI, em um Neossolo Flúvico, no segundo semestre de 2017, em delineamento em blocos casualizados em esquema fatorial (2x2x5), cujos fatores foram: (i) genótipos de feijão-caupi (BRS Imponente e BRS Itaim), (ii) época de aplicação da adubação nitrogenada (fundação+cobertura ou totalmente em cobertura) e (iii) doses de N (zero, 10, 30, 50 e 70 kg ha-1 – fonte ureia). As variáveis mensuradas foram a análise do N total do tecido vegetal com a coleta da folha +1 e +3, além da produtividade de grãos. Quando analisamos o efeito da interação houve significância somente para os fatores época de aplicação e doses de N, e quando desdobramos as doses para cada época de adubação nitrogenada o melhor modelo de resposta foi o quadrático, cujo ponto de máxima produtividade física foram verificados com as doses de 34 e 44 kg ha-1 de N para a aplicação na fundação+cobertura e totalmente em cobertura, respectivamente. Ainda, a doses mais econômica para a aplicação de N em fundação+cobertura e totalmente em cobertura foram de 26,0 e 35,6 kg ha-1, respectivamente. Para o N a folha que melhor representa o estado nutricional para a diagnose foliar mostrou-se ser a +3

    Zika virus in the Americas: Early epidemiological and genetic findings

    No full text
    Submitted by sandra infurna ([email protected]) on 2016-06-21T16:53:42Z No. of bitstreams: 1 gonzalo2_bello_etal_IOC_2016.pdf: 1066180 bytes, checksum: d43c1cf1b828de79e634ed276cc62178 (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-06-21T17:27:43Z (GMT) No. of bitstreams: 1 gonzalo2_bello_etal_IOC_2016.pdf: 1066180 bytes, checksum: d43c1cf1b828de79e634ed276cc62178 (MD5)Made available in DSpace on 2016-06-21T17:27:43Z (GMT). No. of bitstreams: 1 gonzalo2_bello_etal_IOC_2016.pdf: 1066180 bytes, checksum: d43c1cf1b828de79e634ed276cc62178 (MD5) Previous issue date: 2016Submitted by Angelo Silva ([email protected]) on 2016-07-07T11:16:45Z No. of bitstreams: 3 gonzalo2_bello_etal_IOC_2016.pdf.txt: 51037 bytes, checksum: bebf604bcb5623ddff92fec2bebc02a5 (MD5) gonzalo2_bello_etal_IOC_2016.pdf: 1066180 bytes, checksum: d43c1cf1b828de79e634ed276cc62178 (MD5) license.txt: 2991 bytes, checksum: 5a560609d32a3863062d77ff32785d58 (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-07-07T11:43:23Z (GMT) No. of bitstreams: 3 license.txt: 2991 bytes, checksum: 5a560609d32a3863062d77ff32785d58 (MD5) gonzalo2_bello_etal_IOC_2016.pdf: 1066180 bytes, checksum: d43c1cf1b828de79e634ed276cc62178 (MD5) gonzalo2_bello_etal_IOC_2016.pdf.txt: 51037 bytes, checksum: bebf604bcb5623ddff92fec2bebc02a5 (MD5)Made available in DSpace on 2016-07-07T11:43:23Z (GMT). No. of bitstreams: 3 license.txt: 2991 bytes, checksum: 5a560609d32a3863062d77ff32785d58 (MD5) gonzalo2_bello_etal_IOC_2016.pdf: 1066180 bytes, checksum: d43c1cf1b828de79e634ed276cc62178 (MD5) gonzalo2_bello_etal_IOC_2016.pdf.txt: 51037 bytes, checksum: bebf604bcb5623ddff92fec2bebc02a5 (MD5) Previous issue date: 2016Ministério da Saúde. Instituto Evandro Chagas, Centro de Inovação tecnológica. Ananindeua, PA, Brasil / University of Oxford. Department of Zoology. Oxford, UK.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.University of Oxford. Department of Zoology. Oxford, UK.Universidade de São Paulo. Instituto Adolfo Lutz. São Paulo, SP, Brasil.Universidade de São Paulo. Instituto Adolfo Lutz. São Paulo, SP, Brasil.University of Oxford. Department of Zoology. Oxford, UK.University of Oxford. Department of Zoology. Oxford, UK.University of Oxford. Department of Zoology. Oxford, UK.University of Oxford. Wellcome Trust Centre for Human Genetics. Oxford, UK.University of Oxford. Wellcome Trust Centre for Human Genetics. Oxford, UK.Universidade de São Paulo. Instituto Adolfo Lutz. São Paulo, SP, Brasil.Universidade de São Paulo. Instituto Adolfo Lutz. São Paulo, SP, Brasil.Universidade de São Paulo. Instituto Adolfo Lutz. São Paulo, SP, Brasil.Universidade de São Paulo. Instituto Adolfo Lutz. São Paulo, SP, Brasil.Universidade de São Paulo. Instituto Adolfo Lutz. São Paulo, SP, Brasil.Universidade de São Paulo. Instituto Adolfo Lutz. São Paulo, SP, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.University of Oxford. Department of Zoology. Oxford, UK / Metabiota. San Francisco, CA 94104, USA.University of Oxford. Department of Zoology. Oxford, UK.University of Oxford. Department of Zoology. Oxford, UK.Fundação Oswaldo Cruz. Salvador, BA, Brasil.Universidade Estadual de Feira de Santana, Feira de Santana. Departamento de Saúde. Centro de Pós-Graduação em Saúde Coletiva. Feira de Santana, BA, Brasil.Fundação Oswaldo Cruz. Salvador, BA, Brasil.University of Washington. Institute for Health Metrics and Evaluation,. Seattle, WA, USA / University of Oxford. Wellcome Trust Centre for Human Genetics. Oxford, UK.Ministério da Saúde. Instituto Evandro Chagas, Centro de Inovação tecnológica. Ananindeua, PA, Brasil.Ministério da Saúde. Instituto Evandro Chagas, Centro de Inovação tecnológica. Ananindeua, PA, BrasilMinistério da Saúde. Instituto Evandro Chagas, Centro de Inovação tecnológica. Ananindeua, PA, BrasilMinistério da Saúde. Instituto Evandro Chagas, Centro de Inovação tecnológica. Ananindeua, PA, BrasilMinistério da Saúde. Instituto Evandro Chagas, Centro de Inovação tecnológica. Ananindeua, PA, BrasilMinistério da Saúde. Instituto Evandro Chagas, Centro de Inovação tecnológica. Ananindeua, PA, BrasilMinistério da Saúde. Instituto Evandro Chagas, Centro de Inovação tecnológica. Ananindeua, PA, BrasilMinistério da Saúde. Instituto Evandro Chagas, Centro de Inovação tecnológica. Ananindeua, PA, BrasilMinistério da Saúde. Instituto Evandro Chagas, Centro de Inovação tecnológica. Ananindeua, PA, BrasilFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de AIDS e Imunologia Molecular. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de AIDS e Imunologia Molecular. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de AIDS e Imunologia Molecular. Rio de Janeiro, RJ, Brasil.Li Ka Shing Knowledge Institute. St. Michael’s Hospital. Toronto, Canada / University of Toronto. Department of Medicine. Division of Infectious Diseases. Toronto, Canada.University of Toronto.Dalla Lana School of Public Health. Toronto, Canada;Brasil. Ministério da Saúde. Brasília, DF, Brasil.Brasil. Ministério da Saúde. Brasília, DF, Brasil.University of Texas Medical Branch. Department of Pathology. Galveston, TX, USA.University of Oxford. Department of Zoology. Oxford, UK / Metabiota. San Francisco, CA 94104, USA.Ministério da Saúde. Instituto Evandro Chagas, Centro de Inovação tecnológica. Ananindeua, PA, Brasil / University of Texas Medical Branch. Department of Pathology. Galveston, TX, USA.Ministério da Saúde. Instituto Evandro Chagas. Departamento de Arbovirologia e Febres Hemorrágicas. Ananindeua, PA, Brasil.Brazil has experienced an unprecedented epidemic of Zika virus (ZIKV), with ~30,000 cases reported to date. ZIKV was first detected in Brazil in May 2015 and cases of microcephaly potentially associated with ZIKV infection were identified in November 2015. Using next generation sequencing we generated seven Brazilian ZIKV genomes, sampled from four self-limited cases, one blood donor, one fatal adult case, and one newborn with microcephaly and congenital malformations. Phylogenetic and molecular clock analyses show a single introduction of ZIKV into the Americas, estimated to have occurred between May-Dec 2013, more than 12 months prior to the detection of ZIKV in Brazil. The estimated date of origin coincides with an increase in air passengers to Brazil from ZIKV endemic areas, and with reported outbreaks in Pacific Islands. ZIKV genomes from Brazil are phylogenetically interspersed with those from other South American and Caribbean countries. Mapping mutations onto existing structural models revealed the context of viral amino acid changes present in the outbreak lineage; however no shared amino acid changes were found among the three currently available virus genomes from microcephaly cases. Municipality-level incidence data indicate that reports of suspected microcephaly in Brazil best correlate with ZIKV incidence around week 17 of pregnancy, although this does not demonstrate causation. Our genetic description and analysis of ZIKV isolates in Brazil provide a baseline for future studies of the evolution and molecular epidemiology in the Americas of this emerging virus

    Data from: Zika virus in the Americas: early epidemiological and genetic findings

    No full text
    Brazil has experienced an unprecedented epidemic of Zika virus (ZIKV), with ~30,000 cases reported to date. ZIKV was first detected in Brazil in May 2015 and cases of microcephaly potentially associated with ZIKV infection were identified in November 2015. Using next generation sequencing we generated seven Brazilian ZIKV genomes, sampled from four self-limited cases, one blood donor, one fatal adult case, and one newborn with microcephaly and congenital malformations. Phylogenetic and molecular clock analyses show a single introduction of ZIKV into the Americas, estimated to have occurred between May-Dec 2013, more than 12 months prior to the detection of ZIKV in Brazil. The estimated date of origin coincides with an increase in air passengers to Brazil from ZIKV endemic areas, and with reported outbreaks in Pacific Islands. ZIKV genomes from Brazil are phylogenetically interspersed with those from other South American and Caribbean countries. Mapping mutations onto existing structural models revealed the context of viral amino acid changes present in the outbreak lineage; however no shared amino acid changes were found among the three currently available virus genomes from microcephaly cases. Municipality-level incidence data indicate that reports of suspected microcephaly in Brazil best correlate with ZIKV incidence around week 17 of pregnancy, although this does not demonstrate causation. Our genetic description and analysis of ZIKV isolates in Brazil provide a baseline for future studies of the evolution and molecular epidemiology in the Americas of this emerging virus

    Epidemiological Data: Numbers of suspected ZIKV cases and suspected microcephaly cases per state and per epidemiological week.

    No full text
    Contains 1) CSV file with number suspected ZIKV cases from January 2015 to the end of December 2015; 2) CSV file with number of suspected microcephaly cases from January 2015 to the first week of January 2016. Numbers correspond to suspected microcephaly cases at week 20 of pregnancy; 3) CSV file with codes of state of residence and municipality of residence in Brazil; and 4) R scripts for correlation analysis described in SI Section 1.5

    Sequence data details and alignments for dataset A and B.

    No full text
    Contains (1) table with accession numbers, isolate names, cell passage history, publication details, country/location of sampling, sampling dates and (2) Fasta format sequence alignments of datasets A and B

    BEAST XML input file used for genetic analysis.

    No full text
    BEAST XML input file used to generate Figure 3 under a strict clock model, a Bayesian skyline coalescent prior and a CTMC prior on the clock rate
    corecore