13 research outputs found

    Electrosíntesi de peròxid d'hidrogen en una pila de combustible alcalina

    Get PDF
    El peròxid d'hidrogen és una substància amb una química molt variada, que pot actuar com a agent oxidant o reductor. Com a agent oxidant s'utilitza, entre d'altres aplicacions, en el tractament d'aigües residuals, en la manufactura de productes químics i en la indústria de la polpa i del paper. D'altra banda, és un agent ecològic, ja que en les seves reaccions només es produeix aigua i oxigen.En aquesta tesi es presenta un nou mètode d'electrogeneració de peròxid d'hidrogen fent ús d'una pila de combustible alcalina amb dos elèctrodes porosos de difusió de gas. El procés no requereix electricitat. La cel·la consta d'un únic compartiment i no utilitza cap membrana separadora, que introduiria una caiguda òhmica addicional. L'electròlit consisteix en una dissolució aquosa de KOH. El sistema és molt versàtil: permet treballar a diferentes concentracions de l'electròlit, temperatures, pressions dels gasos de l'alimentació i també per càrregues i en continu, tot i que és amb aquesta darrera modalitat on el sistema assoleix les seves prestacions òptimes. Això permet adaptar les condicions experimentals a les aplicacions concretes.El sistema que s'ha ideat es basa en la utilització d'elèctrodes de difusió, manufacturats al nostre laboratori i comercials, tant per a l'hidrogen com per a l'oxigen. Aquests elèctrodes permeten l'electrosíntesi del peròxid d'hidrogen alcalí a densitats de corrent interessants des d'un punt de vista industrial (> 100 mA cm-2) i s'ha demostrat que l'eficiència de corrent del procés es troba entre el 90 i el 100 %. A més, h'ha desenvolupat un fonament teòric del funcionament de l'AFC per tal de justificar el voltatge trobat experimentalment.S'han considerat aspectes bàsics com ara la cinètica de les reaccions electròdiques, mitjançant diferents tècniques electroquímiques, per comprendre el funcionament i el comportament dels elèctrodes a la pila. També s'ha fet ús de les tècniques de microscòpia electrònica d'escombratge (SEM), d'espectroscòpia fotoelectrònica de raigs X (XPS) i d'infraroig per transformada de Fourier (FTIR) per monitoritzar certs fenòmens associats al funcionament dels elèctrodes. Així mateix, s'ha emprat la tècnica de la porosimetria (BET) per tal de determinar l'àrea específica d'alguns elèctrodes.Per a deteminar la idoneïtat del sistema i la seva capacitat de producció de H2O2, es va mesurar el peròxid d'hidrogen produït mitjançant l'anàlisi permanganomètrica estàndard. A més, es van enregistrar corbes voltatge-densitat de corrent sota diferentes condicions experimentals per a caracteritzar el comportament de la pila de combustible com a tal i els fenòmens que controlen el seu funcionament. L'eficiència de corrent del procés es va determinar en funció de la resistència externa entre ambdós elèctrodes. Es va constatar que tant la cel·la de combustible com ambdós elèctrodes es comportaven de manera reversible sota certes condicions experimentals.El procés de reducció catòdic de l'oxigen a ió hidroperòxid en medi bàsic es va investigar amb la tècnica de voltamperimetria d'escombratge lineal (LSV) i amb la cronoamperimetria. Es va proposar un mecanisme de reacció consistent amb els resultats experimentals i es van determinar les energies d'activació aparents del procés de reducció de l'O2 a HO2-. D'altra banda, aquest procés es va estudiar per espectroscòpia d'impedància electroquímica. Aquesta tècnica també es va utilitzar per a caracteritzar el procés de mullament del càtode als primers estadis de funcionament. Les tècniques espectroscòpiques d'XPS i DRIFTS es van emprar per a posar de manifest la funcionalització del càtode com a conseqüència de la seva operació. La tècnica de SEM va revelar l'estructura porosa de la superfície de l'elèctrode.Quant el procés anòdic, la seva caracterització preliminar per LSV ha permès demostrar la seva complexitat i el fet que requereix una anàlisi més profunda, començant per l'estudi dels processos d'activació

    On-site H2O2 electrogeneration at a CoS2-based air-diffusion cathode for the electrochemical degradation of organic pollutants

    Get PDF
    This work reports, for the first time, the manufacture and use of an air-diffusion cathode containing CoS2 nanoparticles to enhance the H2O2 electrogeneration. Hydrothermal synthesis allowed the formation of crystalline CoS2 with pyrite structure, either unsupported or supported on carbon nanotubes. Both kinds of catalysts were characterized by X-ray diffraction and FE-SEM combined with energy dispersive X-ray analysis. The use of carbon nanotubes as support led to a remarkable enhancement of the CoS2 stability, as deduced from cyclic voltammetry analysis. The electrochemical activity of the CoS2-based materials towards the oxygen reduction reaction (ORR) in acidic medium was examined by potentiodynamic techniques using a rotating disk electrode. Both catalysts showed activity towards the ORR, being predominant the two-electron pathway to form H2O2 as main product. A novel CoS2-on-carbon nanotubes catalyzed air-diffusion cathode, as well as an uncatalyzed one made for comparison, was manufactured to electrogenerate H2O2 under galvanostatic conditions in an undivided two-electrode cell. A concentration of 56.9 mM was found with the former cathode at constant j of 100 mA cm-2, much greater than 32.0 mM found with the uncatalyzed cathode. This informs about the high performance of the CoS2 nanoparticles to promote the two-electron ORR. Finally, the treatment of aqueous solutions of the anaesthetic tetracaine at pH 3.0 and 100 mA cm-2 by electro-oxidation and photoelectro-Fenton processes demonstrated the viability of the manufactured CoS2-based cathode for water treatment

    Enhanced electrocatalytic production of H2O2 at Co-based air-diffusion cathodes for the photoelectro-fenton treatment of bronopol

    Get PDF
    (Co, S, P)-decorated multiwalled carbon nanotubes (MWCNTs) have been synthesized following a hydrothermal route as electrocatalysts to manufacture large surface area air-diffusion cathodes with carbon cloth as substrate. The enhanced electrocatalytic H2O2 production as compared with Co-free MWCNTs cathodes was demonstrated in a 2.5-L pre-pilot plant with either a RuO2-based or boron-doped diamond (BDD) anode, accumulating between 2- and 3-fold greater H2O2 contents with the catalyzed cathode. The good stability of this new material was ensured from the low Co leaching, with less than 9% Co released to solutions upon repeated usage. Aqueous solutions of the brominated organic preservative bronopol with 0.050 M Na2SO4 at pH 3.0 were comparatively treated by electro-oxidation (EO-H2O2), electro-Fenton (EF), UVA-assisted photoelectro-Fenton (PEF) and solar PEF (SPEF) at constant current density. SPEF with BDD anode and the catalyzed cathode showed the best performance, with total bronopol removal at 210 min and 94% mineralization after 360 min at 40 mA cm−2, thanks to the action of OH, BDD(OH) and sunlight. Formic acid was identified as main reaction by-product, whereas Br and N atoms were mainly converted to Br-, BrO3- and NO3-. Some unidentified organic by-product containing Br and N was formed as well

    Testing PtCu nanoparticles supported on highly ordered mesoporous carbons CMK3 and CMK8 as catalysts for low-temperature fuel cells

    Get PDF
    Pt(Cu) nanoparticles supported on CMK3 and CMK8 ordered mesoporous carbons (OMCs) have been synthesized by electroless deposition of Cu followed by galvanic exchange with Pt. The structural characterization by high-resolution transmission electron microscopy and X-ray diffraction showed the formation of Pt(Cu) nanoparticles of 4-5 nm, in which PtCu alloys with contracted fcc Pt lattice and 70-80 at.% Pt was identified. The X-ray photoelectron spectroscopy analyses indicated that the Pt(Cu) nanoparticles were mainly composed of a PtCu alloy core covered by a Ptrich shell, in agreement with the steady cyclic voltammograms, which did not show any Cu oxidation peaks. Electroactive surface areas up to about 70 m2 gPt−1 were obtained. The onset potentials for CO oxidation and the oxygen reduction reaction were more negative and positive, respectively, as compared to Pt/C, thus indicating higher activity of these Pt(Cu) catalysts with respect to the latter. Based on the corresponding binding energies, these better activities were attributed to the favorable geometric and ligand effects of Cu on Pt, which were able to reduce the adsorption energy of the intermediates on Pt. Pt(Cu)/CMK3 showed competitive mass and specific activities, as well as better stability than Pt/C

    Platinum-catalyzed Nb-doped TiO2 and Nb-doped TiO2 nanotubes for hydrogen generation in proton exchange membrane water electrolyzers

    Get PDF
    This paper studies the catalytic activity of Pt deposited onto Nb-doped titania supports toward the hydrogen evolution reaction (HER). New catalysts based on Nb-doped TiO2 nanoparticles (nNb-TiO2) and Nb-doped TiO2 nanotubes (nNb-TNTs), with n in the range 3-10 at % (Nb+Ti), were synthesized. The specific surface areas of nNb-TNTs were 250−300 m2g-1, about three times higher than those of nNb-TiO2. X-ray diffraction showed the Nb incorporation into the TiO2 lattice with its consequent lattice expansion. The X-ray photoelectron spectra of Pt deposited onto Nb-doped titania revealed a negative charge accumulation on Pt, thus denoting strong metal-support interaction. The electrochemical characterization in acidic media showed that Pt supported on nNb-TiO2 and nNb-TNTs presented better activity towards the HER than that of Pt deposited onto the un-doped supports and commercial Pt on carbon. The best performance was obtained with a small Nb doping of 3 at %

    Electrochemical performance of carbon-supported Pt(Cu) electrocatalysts for low-temperature fuel cells

    Get PDF
    Pt(Cu) nanoparticles supported on carbon nanofibers (CNFs), multi-walled carbon nanotubes (MWCNTs) and Vulcan carbon XC72, have been synthesized by electroless deposition and galvanic exchange. The structural analyses show contracted Pt fcc lattices due to the formation of a PtCu alloy core covered by a Pt-rich shell, mean crystallite sizes of about 3 nm, as well as good dispersion and carbon attachment. The electrochemical surface areas (ECSAs) of Pt(Cu)/CNF and Pt(Cu)/XC72 are comparable to those of commercial Pt/C and PtCu/C. The Pt(Cu) electrocatalysts show more negative onset potentials for CO oxidation than Pt/C and PtCu/C, thus indicating their greater CO tolerance. Pt(Cu)/CNF and Pt(Cu)/MWCNT present the highest mass activity and specific activity for the O2 reduction, respectively, both with better relative stability than Pt(Cu)/XC72. Pt(Cu)/CNF and Pt(Cu)/MWCNT are then considered good cathode catalysts, yielding estimated savings of about 50 wt.% Pt, when applied to low-temperature fuel cells

    Supporting IrO2 and IrRuOx nanoparticles on TiO2 and Nb-doped TiO2 nanotubes as electrocatalysts for the oxygen evolution reaction

    Get PDF
    IrO2 and IrRuOx (Ir:Ru 60:40 at%), supported by 50 wt% onto titania nanotubes (TNTs) and (3 at% Nb) Nb-doped titania nanotubes (Nb-TNTs), as electrocatalysts for the oxygen evolution reaction (OER), were synthesized and characterized by means of structural, surface analytical and electrochemical techniques. Nb doping of titania significantly increased the surface area of the support from 145 (TNTs) to 260 m2 g−1 (Nb-TNTs), which was significantly higher than those of the Nb-doped titania supports previously reported in the literature. The surface analytical techniques showed good dispersion of the catalysts onto the supports. The X-ray photoelectron spectroscopy analyses showed that Nb was mainly in the form of Nb(IV) species, the suitable form to behave as a donor introducing free electrons to the conduction band of titania. The redox transitions of the cyclic voltammograms, in agreement with the XPS results, were found to be reversible. Despite the supported materials presented bigger crystallite sizes than the unsupported ones, the total number of active sites of the former was also higher due to their better catalyst dispersion. Considering the outer and the total charges of the cyclic voltammograms in the range 0.1-1.4 V, stability and electrode potentials at given current densities, the preferred catalyst was IrO2 supported on the Nb-TNTs. The electrode potentials corresponding to given current densities were between the smallest ones given in the literature despite the small oxide loading used in this work and its Nb doping, thus making the Nb-TNTs-supported IrO2 catalyst a promising candidate for the OER. The good dispersion of IrO2, high specific surface area of the Nb-doped supports, accessibility of the electroactive centers, increased stability due to Nb doping and electron donor properties of the Nb(IV) oxide species were considered the main reasons for its good performance

    A stable CoSP/MWCNTs air-diffusion cathode for the photoelectro-Fenton degradation of organic pollutants at pre-pilot scale

    No full text
    CoS2/MWCNTs have been previously described as potentially viable catalysts to enhance the classical two-electron H2O2 production from O2 reduction reaction (ORR) for in situ water treatment, but their poor stability still limits their large-scale application. Here, the synthesis and characterization of a novel electrocatalyst made of CoSP nanoparticles supported onto multi-walled carbon nanotubes (MWCNTs) is reported. X-ray diffraction data demonstrated the much higher stability conferred upon partial sulfur substitution by phosphorus. Linear and cyclic voltammograms of CoSP/MWCNTs showed a potential window from 0.9 to 0.1 V for the ORR at pH 3.0, along with greater H2O2 production ability. Large area air-diffusion cathodes were manufactured by depositing the catalyst onto carbon paper, being further used in a pre-pilot filter-press cell containing a boron-doped diamond anode. A stable H2O2 accumulation, with maximum current efficiency of 72.0%, was found upon electrolysis of 2.5 L of 0.050 M Na2SO4 at pH 3.0 and 25 mA cm-2. As a crucial finding, Co leaching was negligible. Solutions with 20 mg L-1 of the herbicide bentazon in the same electrolyte could not be mineralized by electrochemical oxidation, whereas photoelectro-Fenton with an UVA lamp and 0.50 mM Fe2+ led to total removal of the herbicide with 77.0% mineralization

    Procedimiento para incrementar la conductividad eléctrica de un material de carbono mesoporoso ordenado y material obtenible a partir de dicho procedimiento

    Get PDF
    La presente invención se refiere a un procedimiento para incrementar la conductividad eléctrica de un material de carbono mesoporoso ordenado (CMK-3) obtenido mediante la técnica de nanomoldeo, donde dicho procedimiento comprende tratar térmicamente en atmósfera inerte dicho material de carbono mesoporoso ordenado. Asimismo, es objeto de la invención el material obtenible a partir de dicho procedimiento, un procedimiento para la obtención de un electrocatalizador a partir de dicho material y su uso para la obtención de un ensamblaje membrana-electrodo.Peer reviewedConsejo Superior de Investigaciones Científicas (España), Universidad de la Laguna, Fundación CIDETECA1 Solicitud de patente con informe sobre el estado de la técnic

    Supporting PtRh alloy nanoparticle catalysts by electrodeposition on carbon paper for the ethanol electrooxidation in acidic medium

    No full text
    Pt80Rh20 and Pt60Rh40 alloy catalysts were electrodeposited at constant current density from different electrolytic baths on commercial carbon paper in order to be tested for the ethanol oxidation reaction (EOR) and as anodes in a direct ethanol fuel cell (DEFC). Pt and Rh anodes prepared in the same form were also examined for comparison. As measured by energy-dispersive X-ray microanalyses, the electrodeposited Pt:Rh atomic ratios were the same as those of the precursors in the bath. X-ray diffraction showed the PtRh alloy formation with mean particle sizes of 8.3 and 7.0 nm for Pt80Rh20 and Pt60Rh40, respectively, and a Pt lattice contraction caused by the Rh addition. The X-ray photoelectron spectroscopy analyses suggested a Pt lattice strain due to Rh alloying because the Pt4f binding energies were shifted to higher values with respect to that of pure Pt. The onset potentials of the alloy oxidation, CO stripping and ethanol oxidation in the cyclic and linear sweep voltammograms indicated that Pt60Rh40 was the most active for the CO and the ethanol electrooxidation. The apparent activation energies for the EOR on that alloy were also the lowest one, in agreement with its highest activity. These results were explained by the bifunctional mechanism, assuming that Rh contributed with hydroxylated species to favor the removal of the CO-type adsorbed species on Pt sites, and by the effect of Rh on the Pt electronic structure, the lattice strain being dominating over the charge transfer between Rh and Pt. Tests carried out in single DEFCs showed the feasibility of using the Pt60Rh40 electrodeposited electrodes on carbon as the anode in a real fuel cell environment
    corecore