96 research outputs found

    A Influência do Cursinho no Desempenho do Exame Vestibular

    Get PDF
    O surgimento dos cursinhos nos últimos vinte anos representa, sem dúvida, uma anomalia do sistema de ensino brasileiro. Transformados em meras agências de treinamento para os exames vestibulares, a atividade dos cursinhos é fortemente limitativa, deixando à margem as demais funções que deveriam ser cumpridas pelas escolas a nível de 2.° grau. As diretrizes legislativas do país sobre vestibular determinam a "utilização de mecanismos de aferição que assegurem (... ) e comprovem um mínimo de conhecimento a nível de 2.° grau ... (dec-lei n. 79293/77) ". Objetivando o cumprimento desses dispositivos, a Universidade Federal do Ceará (U.F.C.), através da Comissão Coordenadora do Vestibular (CCV), tem desenvolvido trabalho no sentido de aumentar o grau de eficiência das provas dos exames vestibulares, elaborando quesitos tecnicamente capazes de aferir níveis de aprendizagem mais complexos e, conseqüentemente, diminuindo a probabilidade de acertos casuais, por memorização, eliminação de respostas etc. Muito se tem discutido sobre as conseqüências da atuação dos cursinhos no ensino de 2.° grau e no exame vestibular; entretanto, raras têm sido as iniciativas de estudar formalmente o problema. Numa tentativa de testar se o cursinho tem ou não efeito positivo sobre a classificação no vestibular, selecionamos uma amostra de 25% dos Questionários Sócio-Econômicos aplicados pela CCV no 1.° Concurso Vestibular da U.F.C.-1977, num total de 1240 observações, sendo 566 homens e 575 mulheres. Na análise preliminar, constatou-se correlações negativas e significativas (ao nível de 5%) entre as variáveis "fez cursinho" e "passou" no vestibular, tanto para homens como para mulheres. No entanto, isso não é prova satisfatória de que o cursinho tenha influência negativa sobre o aluno no seu desempenho no exame vestibular. considerando-se a necessidade de que outras variáveis sejam estudadas simultaneamente. Para tal, foi feita uma regressão onde foram controladas as seguintes variáveis: idade, repetência no 2.° grau, cursinho, tentativas de exame vestibular, número de pessoas com que divide o quarto, leitura de jornal, curso de língua estrangeira, escolha do espanhol - para o aluno; e nível de instrução do pai e da mãe, renda do pai e da mãe, tipo de casa, leitura de jornal pelo pai e pela mãe - para a família. O resultado da regressão confirmou a hipótese de que o cursinho não tem efeito positivo sobre a probabilidade de o aluno se classificar no exame vestibular, sendo que, para as mulheres, o efeito foi negativo e significante, enquanto que para os homens, foi negativo mas insignificante

    A spatial stream-network approach assists in managing the remnant genetic diversity of riparian forests

    Get PDF
    Quantifying the genetic diversity of riparian trees is essential to understand their chances to survive hydroclimatic alterations and to maintain their role as foundation species modulating fluvial ecosystem processes. However, the application of suitable models that account for the specific dendritic structure of hydrographic networks is still incipient in the literature. We investigate the roles of ecological and spatial factors in driving the genetic diversity of Salix salviifolia, an Iberian endemic riparian tree, across the species latitudinal range. We applied spatial stream-network models that aptly integrate dendritic features (topology, directionality) to quantify the impacts of multiple scale factors in determining genetic diversity. Based on the drift hypothesis, we expect that genetic diversity accumulates downstream in riparian ecosystems, but life history traits (e.g. dispersal patterns) and abiotic or anthropogenic factors (e.g. drought events or hydrological alteration) might alter expected patterns. Hydrological factors explained the downstream accumulation of genetic diversity at the intermediate scale that was likely mediated by hydrochory. The models also suggested upstream gene flow within basins that likely occurred through anemophilous and entomophilous pollen and seed dispersal. Higher thermicity and summer drought were related to higher population inbreeding and individual homozygosity, respectively, suggesting that increased aridity might disrupt the connectivity and mating patterns among and within riparian populationsinfo:eu-repo/semantics/publishedVersio

    Complete blood count parameters as biomarkers of retinopathy of prematurity: a Portuguese multicenter study

    Get PDF
    © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Purpose: To evaluate complete blood count (CBC) parameters in the first week of life as predictive biomarkers for the development of retinopathy of prematurity (ROP). Methods: Multicenter, prospective, observational study of a cohort of preterm infants born with gestational age (GA) < 32 weeks or birth weight < 1500 g in eight Portuguese neonatal intensive care units. All demographic, clinical, and laboratory data from the first week of life were collected. Univariate logistic regression was used to assess risk factors for ROP and then multivariate regression was performed. Results: A total of 455 infants were included in the study. The median GA was 29.6 weeks, and the median birth weight was 1295 g. One hundred and seventy-two infants (37.8%) developed ROP. Median values of erythrocytes (p < 0.001), hemoglobin (p < 0.001), hematocrit (p < 0.001), mean corpuscular hemoglobin concentration (p < 0.001), lymphocytes (p = 0.035), and platelets (p = 0.003) of the group of infants diagnosed with ROP any stage were lower than those without ROP. Mean corpuscular volume (MCV) (p = 0.044), red blood cell distribution width (RDW) (p < 0.001), erythroblasts (p < 0.001), neutrophils (p = 0.030), neutrophils-lymphocytes ratio (p = 0.028), and basophils (p = 0.003) were higher in the ROP group. Higher values of MCV, erythroblasts, and basophils remained significantly associated with ROP after multivariate regression. Conclusion: In our cohort, the increase in erythroblasts, MCV, and basophils in the first week of life was significantly and independently associated with the development of ROP. These CBC parameters may be early predictive biomarkers for ROP.Open access funding provided by FCT|FCCN (b-on). This work was supported by the Laboratório de Genética and the Instituto de Saúde Ambiental (ISAMB) of the Faculdade de Medicina of Universidade de Lisboa and the Instituto de Investigação Científica Bento da Rocha Cabral. The writing of the manuscript was also supported by funds from Fundação para a Ciência e a Tecnologia to ISAMB (ref. UIDB/04295/2020 and UIDP/04295/2020). This work was also part of a doctoral project funding by the company CUF with a PhD grant in Medicine awarded in 2021 and by the Portuguese Society of Ophthalmology with a PhD grant awarded in 2019.info:eu-repo/semantics/publishedVersio

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (&gt;66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    corecore