42 research outputs found

    Rebleeding After Aneurysmal Subarachnoid Hemorrhage in Two Centers Using Different Blood Pressure Management Strategies

    Get PDF
    Background: High systolic blood pressure (SBP) after aneurysmal subarachnoid hemorrhage (aSAH) has been associated with an increased risk of rebleeding. It remains unclear if an SBP lowering strategy before aneurysm treatment decreases this risk without increasing the risk of a delayed cerebral ischemia (DCI). Therefore, we compared the rates of in-hospital rebleeding and DCI among patients with aSAH admitted in two tertiary care centers with different SBP management strategies. Methods: Retrospective cohort study. Consecutive patients from Utrecht and Toulouse admitted within 24 h after the aSAH onset were enrolled. In Toulouse, the target SBP before aneurysm treatment was ≀140 mm Hg, while, in Utrecht, an increased SBP was only treated in extreme situations. We compared SBP levels, the incidence of rebleeding within 24 h after admission, and DCI during hospitalization. Results: We enrolled 373 patients in Utrecht and 149 in Toulouse. The mean SBP on admission was similar but lower in Toulouse 4 h after admission (127.3 ± 17.4 vs. 138. ± 25.7 mmHg; p < 0.0001). After a median delay of 3.7 h (IQR, 2.3-7.4) from admission, 4 patients (3%) in Toulouse vs. 29 (8%) in Utrecht experienced a rebleeding. After adjustment for Prognosis on Admission of Aneurysmal Subarachnoid Hemorrhage (PAASH) score, aneurysm size, age, and delay from ictus to admission, the HR was 0.66 (95% CI: 0.23-1.92). Incidence of DCI was 18% in Toulouse and 25% in Utrecht (adjusted OR, 0.68; 95% CI: 0.41-1.11). Conclusion: Our results suggest that an intensive SBP lowering strategy between admission and aneurysm treatment does not decrease the risk of rebleeding and does not increase the risk of DCI compared to a more conservative strategy

    The Boston criteria version 2.0 for cerebral amyloid angiopathy:a multicentre, retrospective, MRI–neuropathology diagnostic accuracy study

    Get PDF
    BACKGROUND: Cerebral amyloid angiopathy (CAA) is an age-related small vessel disease, characterised pathologically by progressive deposition of amyloid ÎČ in the cerebrovascular wall. The Boston criteria are used worldwide for the in-vivo diagnosis of CAA but have not been updated since 2010, before the emergence of additional MRI markers. We report an international collaborative study aiming to update and externally validate the Boston diagnostic criteria across the full spectrum of clinical CAA presentations. METHODS: In this multicentre, hospital-based, retrospective, MRI and neuropathology diagnostic accuracy study, we did a retrospective analysis of clinical, radiological, and histopathological data available to sites participating in the International CAA Association to formulate updated Boston criteria and establish their diagnostic accuracy across different populations and clinical presentations. Ten North American and European academic medical centres identified patients aged 50 years and older with potential CAA-related clinical presentations (ie, spontaneous intracerebral haemorrhage, cognitive impairment, or transient focal neurological episodes), available brain MRI, and histopathological assessment for CAA diagnosis. MRI scans were centrally rated at Massachusetts General Hospital (Boston, MA, USA) for haemorrhagic and non-haemorrhagic CAA markers, and brain tissue samples were rated by neuropathologists at the contributing sites. We derived the Boston criteria version 2.0 (v2.0) by selecting MRI features to optimise diagnostic specificity and sensitivity in a prespecified derivation cohort (Boston cases 1994-2012, n=159), then externally validated the criteria in a prespecified temporal validation cohort (Boston cases 2012-18, n=59) and a geographical validation cohort (non-Boston cases 2004-18; n=123), comparing accuracy of the new criteria to the currently used modified Boston criteria with histopathological assessment of CAA as the diagnostic standard. We also assessed performance of the v2.0 criteria in patients across all cohorts who had the diagnostic gold standard of brain autopsy. FINDINGS: The study protocol was finalised on Jan 15, 2017, patient identification was completed on Dec 31, 2018, and imaging analyses were completed on Sept 30, 2019. Of 401 potentially eligible patients presenting to Massachusetts General Hospital, 218 were eligible to be included in the analysis; of 160 patient datasets from other centres, 123 were included. Using the derivation cohort, we derived provisional criteria for probable CAA requiring the presence of at least two strictly lobar haemorrhagic lesions (ie, intracerebral haemorrhages, cerebral microbleeds, or foci of cortical superficial siderosis) or at least one strictly lobar haemorrhagic lesion and at least one white matter characteristic (ie, severe visible perivascular spaces in centrum semiovale or white matter hyperintensities in a multispot pattern). The sensitivity and specificity of these criteria were 74·8% (95% CI 65·4-82·7) and 84·6% (71·9-93·1) in the derivation cohort, 92·5% (79·6-98·4) and 89·5% (66·9-98·7) in the temporal validation cohort, 80·2% (70·8-87·6) and 81·5% (61·9-93·7) in the geographical validation cohort, and 74·5% (65·4-82·4) and 95·0% (83·1-99·4) in all patients who had autopsy as the diagnostic standard. The area under the receiver operating characteristic curve (AUC) was 0·797 (0·732-0·861) in the derivation cohort, 0·910 (0·828-0·992) in the temporal validation cohort, 0·808 (0·724-0·893) in the geographical validation cohort, and 0·848 (0·794-0·901) in patients who had autopsy as the diagnostic standard. The v2.0 Boston criteria for probable CAA had superior accuracy to the current Boston criteria (sensitivity 64·5% [54·9-73·4]; specificity 95·0% [83·1-99·4]; AUC 0·798 [0·741-0854]; p=0·0005 for comparison of AUC) across all individuals who had autopsy as the diagnostic standard. INTERPRETATION: The Boston criteria v2.0 incorporate emerging MRI markers of CAA to enhance sensitivity without compromising their specificity in our cohorts of patients aged 50 years and older presenting with spontaneous intracerebral haemorrhage, cognitive impairment, or transient focal neurological episodes. Future studies will be needed to determine generalisability of the v.2.0 criteria across the full range of patients and clinical presentations. FUNDING: US National Institutes of Health (R01 AG26484)

    Time to treatment with bridging intravenous alteplase before endovascular treatment:subanalysis of the randomized controlled SWIFT-DIRECT trial.

    Get PDF
    BACKGROUND We hypothesized that treatment delays might be an effect modifier regarding risks and benefits of intravenous thrombolysis (IVT) before mechanical thrombectomy (MT). METHODS We used the dataset of the SWIFT-DIRECT trial, which randomized 408 patients to IVT+MT or MT alone. Potential interactions between assignment to IVT+MT and expected time from onset-to-needle (OTN) as well as expected time from door-to-needle (DTN) were included in regression models. The primary outcome was functional independence (modified Rankin Scale (mRS) 0-2) at 3 months. Secondary outcomes included mRS shift, mortality, recanalization rates, and (symptomatic) intracranial hemorrhage at 24 hours. RESULTS We included 408 patients (IVT+MT 207, MT 201, median age 72 years (IQR 64-81), 209 (51.2%) female). The expected median OTN and DTN were 142 min and 54 min in the IVT+MT group and 129 min and 51 min in the MT alone group. Overall, there was no significant interaction between OTN and bridging IVT assignment regarding either the functional (adjusted OR (aOR) 0.76, 95% CI 0.45 to 1.30) and safety outcomes or the recanalization rates. Analysis of in-hospital delays showed no significant interaction between DTN and bridging IVT assignment regarding the dichotomized functional outcome (aOR 0.48, 95% CI 0.14 to 1.62), but the shift and mortality analyses suggested a greater benefit of IVT when in-hospital delays were short. CONCLUSIONS We found no evidence that the effect of bridging IVT on functional independence is modified by overall or in-hospital treatment delays. Considering its low power, this subgroup analysis could have missed a clinically important effect, and exploratory analysis of secondary clinical outcomes indicated a potentially favorable effect of IVT with shorter in-hospital delays. Heterogeneity of the IVT effect size before MT should be further analyzed in individual patient meta-analysis of comparable trials. TRIAL REGISTRATION NUMBER URL: https://www. CLINICALTRIALS gov ; Unique identifier: NCT03192332

    Serum lipids in young patients with ischaemic stroke: a case-control study

    No full text
    OBJECTIVES—The relation betweem serum lipids and ischaemic stroke remains controversial. Studies of lipid related risk factors in cerebrovascular disease have varied greatly in their findings and also in their definition of the cerebrovascular end points. Serum lipids are thought to interact with the pathogenesis of stroke through an atherosclerosis mechanism. Stroke in young patients have been shown to be related to non-atherosclerotic causes most of the time. The aim was to determine the serum lipid profile and the vascular risk factors for ischaemic stroke in a series of patients under 45 with an ischaemic stroke and to compare them with a series of controls of the same age.‹METHODS—Ninety four consecutive patients with ischaemic stroke were compared with 111 controls of the same age recruited from a regional electoral list. Vascular risk factors were recorded and serum lipid profile was determined in all of them.‹RESULTS—Multivariate analyses showed that low HDL cholesterol, male sex, smoking, hypertension, and oral contraceptives were risk factors for intracerebral arterial occlusion.‹CONCLUSION—Low HDL cholesterol was the only serum lipid index to be associated to an increased risk of stroke in this population. Low HDL cholesterol must be considered in the care management of young patients regardless of the detectable presence of atherosclerosis.‹

    Interhemispheric distribution of amyloid and small vessel disease burden in cerebral amyloid angiopathy‐related intracerebral hemorrhage

    No full text
    International audienceBackground and purpose: Intracerebral hemorrhage (ICH) is a devastating presentation of cerebral amyloid angiopathy (CAA), but the mechanisms leading from vascular amyloid deposition to ICH are not well known. Whether amyloid burden and magnetic resonance imaging (MRI) markers of small vessel disease (SVD) are increased in the ICH-affected hemisphere compared to the ICH-free hemisphere in patients with a symptomatic CAA-related ICH was investigated.Methods: Eighteen patients with CAA-related ICH and 18 controls with deep ICH who underwent brain MRI and amyloid positron emission tomography using 18 F-florbetapir were prospectively enrolled. In each hemisphere amyloid uptake using the standardized uptake value ratio and the burden of MRI markers of SVD including cerebral microbleeds, chronic ICH, cortical superficial siderosis, white matter hyperintensities and lacunes were evaluated. Interhemispheric comparisons were assessed by non-parametric matched-pair tests within each patient group.Results: Amyloid burden was similarly distributed across the brain hemispheres in patients with CAA-related ICH (standardized uptake value ratio 1.11 vs. 1.12; P = 0.74). Cortical superficial siderosis tended to be more common in the ICH-affected hemisphere compared to the ICH-free hemisphere (61% vs. 33%; P = 0.063). Other MRI markers of SVD did not differ across brain hemispheres. In controls with deep ICH, no interhemispheric difference was observed either for amyloid burden or for MRI markers of SVD.Conclusions: Brain hemorrhage does not appear to be directly linked to amyloid burden in patients with CAA-related ICH. These findings provide new insights into the mechanisms leading to hemorrhage in CAA
    corecore