632 research outputs found

    Some Remarks on Quantum Coherence

    Full text link
    There are many striking phenomena which are attributed to ``quantum coherence''. It is natural to wonder if there are new quantum coherence effects waiting to be discovered which could lead to interesting results and perhaps even practical applications. A useful starting point for such discussions is a definition of ``quantum coherence''. In this article I give a definition of quantum coherence and use a number of illustrations to explore the implications of this definition. I point to topics of current interest in the fields of cosmology and quantum computation where questions of quantum coherence arise, and I emphasize the impact that interactions with the environment can have on quantum coherence.Comment: 25 pages plain LaTeX, no figures. More references have been added and typos have been corrected. Journal of Modern Optics, in press. Imperial/TP/93-94/1

    Методичні засади інтегрального оцінювання надійності недержавних пенсійних фондів в Україні

    Get PDF
    Визначено суть поняття надійності недержавних пенсійних фондів та розроблено основні методичні засади оцінювання їхньої надійності. Встановлено, що дієвим способом розкриття інформації про надійність фінансових інститутів є використання рейтингів. Визначення класу надійності НПФ має стати основою для надання їм права на здійснення пенсійного забезпечення громадян на другому рівні пенсійної системи України. Для оцінювання надійності НПФ та її зміни пропонується використання системи показників, детермінованих із врахуванням якісних і кількісних параметрів, які характеризують діяльність НПФ. Побудована система комплексного оцінювання надійності НПФ дає змогу присвоєння відповідного класу та рівня надійності.Определена сущность понятия надежности негосударственных пенсионных фондов и разработаны основные методические основы оценки их надежности. Установлено, что действенным способом раскрытия информации о надежности финансовых институтов является использование рейтингов. Определение класса надежности НПФ должно стать основой для предоставления им права на осуществление пенсионного обеспечения граждан на втором уровне пенсионной системы Украины. Для оценки надежности НПФ и ее изменения предлагается использование системы показателей, детерминированных с учетом качественных и количественных параметров, характеризующих деятельность НПФ. Построена система комплексной оценки надежности НПФ, которая позволяет присваивать соответствующий класс и уровень надежности.The essence of the concept of private pension funds reliability is defined and the basic methodological principles of evaluation of their reliability are developed. It is revealed that the use of ratings is an effective way of disclosing information about the reliability of financial institutions. Defining of reliability classes of private pension funds (PPF) shall become the basis for granting them the right to fulfill pension coverage of population on the second level of the pension system in Ukraine. Complex evaluation system of PPF reliability, which allows assignment of the relevant class and level of reliability, is developed

    Revisiting spin alignment of heavy mesons in its inclusive production

    Get PDF
    In the heavy quark limit inclusive production rate of a heavy meson can be factorized, in which the nonperturbative effect related to the heavy meson can be characterized by matrix elements defined in the heavy quark effective theory. Using this factorization, predictions for the full spin density matrix of a spin-1 and spin-2 meson can be obtained and they are characterized only by one coefficient representing the nonperturbative effect. Predictions for spin-1 heavy meson are compared with experiment performed at e+ee^+e^- colliders in the energy range from s=10.5\sqrt{s}=10.5GeV to s=91\sqrt{s}=91GeV, a complete agreement is found for DD^*- and BB^*-meson. For DD^{**} meson, our prediction suffers a large correction, as indicated by experimental data. There exists another approach by taking heavy mesons as bound systems, in which the total angular momentum of the light degrees of freedom is 1/2 and 3/2 for spin-1 and spin-2 meson respectively, then the diagonal parts of spin density matrices can be obtained. However, there are distinct differences in the predictions from the two approaches and they are discussed in detail.Comment: 14 pages with one figur

    Quantum Gravity Constraints on Inflation

    Full text link
    We study quantum gravity constraints on inflationary model building. Our approach is based on requiring the entropy associated to a given inflationary model to be less than that of the de Sitter entropy. We give two prescriptions for determining the inflationary entropy, based on either `bits per unit area' or entanglement entropy. The existence of transPlanckian flat directions, necessary for large tensor modes in the CMB, correlates with an inflationary entropy greater than that allowed by de Sitter space. Independently these techniques also constrain or exclude de Sitter models with large-rank gauge groups and high UV cutoffs, such as racetrack inflation or the KKLT construction.Comment: 22 pages; v2 references adde

    Following a "Collapsing" Wavefunction

    Full text link
    I study the quantum mechanics of a spin interacting with an ``apparatus''. Although the evolution of the whole system is unitary, the spin evolution is not. The system is chosen so that the spin exhibits loss of quantum coherence, or ``wavefunction collapse'', of the sort usually associated with a quantum measurement. The system is analyzed from the point of view of the spin density matrix (or ``Schmidt paths''), and also using the consistent histories approach. These two points of view are contrasted with each other. Connections between the results and the form of the Hamiltonian are discussed in detail.Comment: 30 pages, plain LaTex, 3 figures in a separate uuencoded fil

    Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data

    Get PDF
    Convolutional neural networks (CNNs)-as a type of deep learning-have been specifically designed for highly heterogeneous data, such as natural images. Neuroimaging data, however, is comparably homogeneous due to (1) the uniform structure of the brain and (2) additional efforts to spatially normalize the data to a standard template using linear and non-linear transformations. To harness spatial homogeneity of neuroimaging data, we suggest here a new CNN architecture that combines the idea of hierarchical abstraction in CNNs with a prior on the spatial homogeneity of neuroimaging data. Whereas early layers are trained globally using standard convolutional layers, we introduce patch individual filters (PIF) for higher, more abstract layers. By learning filters in individual latent space patches without sharing weights, PIF layers can learn abstract features faster and specific to regions. We thoroughly evaluated PIF layers for three different tasks and data sets, namely sex classification on UK Biobank data, Alzheimer's disease detection on ADNI data and multiple sclerosis detection on private hospital data, and compared it with two baseline models, a standard CNN and a patch-based CNN. We obtained two main results: First, CNNs using PIF layers converge consistently faster, measured in run time in seconds and number of iterations than both baseline models. Second, both the standard CNN and the PIF model outperformed the patch-based CNN in terms of balanced accuracy and receiver operating characteristic area under the curve (ROC AUC) with a maximal balanced accuracy (ROC AUC) of 94.21% (99.10%) for the sex classification task (PIF model), and 81.24% and 80.48% (88.89% and 87.35%) respectively for the Alzheimer's disease and multiple sclerosis detection tasks (standard CNN model). In conclusion, we demonstrated that CNNs using PIF layers result in faster convergence while obtaining the same predictive performance as a standard CNN. To the best of our knowledge, this is the first study that introduces a prior in form of an inductive bias to harness spatial homogeneity of neuroimaging data

    The Appearance and Disappearance of Ship Tracks on Large Spatial Scales

    Get PDF
    The 1-km advanced very high resolution radiometer observations from the morning, NOAA-12, and afternoon, NOAA-11, satellite passes over the coast of California during June 1994 are used to determine the altitudes, visible optical depths, and cloud droplet effective radii for low-level clouds. Comparisons are made between the properties of clouds within 50 km of ship tracks and those farther than 200 km from the tracks in order to deduce the conditions that are conducive to the appearance of ship tracks in satellite images. The results indicate that the low-level clouds must be sufficiently close to the surface for ship tracks to form. Ship tracks rarely appear in low-level clouds having altitudes greater than 1 km. The distributions of visible optical depths and cloud droplet effective radii for ambient clouds in which ship tracks are embedded are the same as those for clouds without ship tracks. Cloud droplet sizes and liquid water paths for low-level clouds do not constrain the appearance of ship tracks in the imagery. The sensitivity of ship tracks to cloud altitude appears to explain why the majority of ship tracks observed from satellites off the coast of California are found south of 358N. A small rise in the height of low-level clouds appears to explain why numerous ship tracks appeared on one day in a particular region but disappeared on the next, even though the altitudes of the low-level clouds were generally less than 1 km and the cloud cover was the same for both days. In addition, ship tracks are frequent when lowlevel clouds at altitudes below 1 km are extensive and completely cover large areas. The frequency of imagery pixels overcast by clouds with altitudes below 1 km is greater in the morning than in the afternoon and explains why more ship tracks are observed in the morning than in the afternoon. If the occurrence of ship tracks in satellite imagery data depends on the coupling of the clouds to the underlying boundary layer, then cloud-top altitude and the area of complete cloud cover by low-level clouds may be useful indices for this coupling.This work was supported in part by the Office of Naval Research and by the National Science Foundation through the Center for Clouds, Chemistry and Climate at the Scripps Institution of Oceanography, an NSF Science and Technology Center

    Magnetotransport in Two-Dimensional Electron Systems with Spin-Orbit Interaction

    Full text link
    We present magnetotransport calculations for homogeneous two-dimensional electron systems including the Rashba spin-orbit interaction, which mixes the spin-eigenstates and leads to a modified fan-chart with crossing Landau levels. The quantum mechanical Kubo formula is evaluated by taking into account spin-conserving scatterers in an extension of the self-consistent Born approximation that considers the spin degree of freedom. The calculated conductivity exhibits besides the well-known beating in the Shubnikov-de Haas (SdH) oscillations a modulation which is due to a suppression of scattering away from the crossing points of Landau levels and does not show up in the density of states. This modulation, surviving even at elevated temperatures when the SdH oscillations are damped out, could serve to identify spin-orbit coupling in magnetotransport experiments. Our magnetotransport calculations are extended also to lateral superlattices and predictions are made with respect to 1/B periodic oscillations in dependence on carrier density and strength of the spin-orbit coupling.Comment: 8 pages including 8 figures; submitted to PR

    Thermal and Hadrochemical Equilibration in Nucleus-Nucleus Collisions at the SPS

    Full text link
    The currently available set of hadron abundances at the SPS for central S+Au(W,Pb) collisions is compared to predictions from a scenario assuming local thermal and hadrochemical equilibrium. The data are consistent with a freeze-out temperature T = 160-170 MeV. Spectra are consistent with this temperature range and a moderate transverse expansion. The freeze-out points at the AGS and SPS are found to be close to the phase boundary between a hadron gas and an ideal quark-gluon phase.Comment: 14 pages + 3 figures. Paper replaced with version accepted for publication in Phys. Lett.

    Constraining warm dark matter with cosmic shear power spectra

    Full text link
    We investigate potential constraints from cosmic shear on the dark matter particle mass, assuming all dark matter is made up of light thermal relic particles. Given the theoretical uncertainties involved in making cosmological predictions in such warm dark matter scenarios we use analytical fits to linear warm dark matter power spectra and compare (i) the halo model using a mass function evaluated from these linear power spectra and (ii) an analytical fit to the non-linear evolution of the linear power spectra. We optimistically ignore the competing effect of baryons for this work. We find approach (ii) to be conservative compared to approach (i). We evaluate cosmological constraints using these methods, marginalising over four other cosmological parameters. Using the more conservative method we find that a Euclid-like weak lensing survey together with constraints from the Planck cosmic microwave background mission primary anisotropies could achieve a lower limit on the particle mass of 2.5 keV.Comment: 26 pages, 9 figures, minor changes to match the version accepted for publication in JCA
    corecore