655 research outputs found

    On the Equivalence Between Type I Liouville Dynamical Systems in the Plane and the Sphere

    Get PDF
    ProducciĂłn CientĂ­ficaSeparable Hamiltonian systems either in sphero-conical coordinates on an S2 sphere or in elliptic coordinates on a R2 plane are described in a unified way. A back and forth route connecting these Liouville Type I separable systems is unveiled. It is shown how the gnomonic projection and its inverse map allow us to pass from a Liouville Type I separable system with a spherical configuration space to its Liouville Type I partners where the configuration space is a plane and back. Several selected spherical separable systems and their planar cousins are discussed in a classical context

    Projective dynamics and classical gravitation

    Full text link
    Given a real vector space V of finite dimension, together with a particular homogeneous field of bivectors that we call a "field of projective forces", we define a law of dynamics such that the position of the particle is a "ray" i.e. a half-line drawn from the origin of V. The impulsion is a bivector whose support is a 2-plane containing the ray. Throwing the particle with a given initial impulsion defines a projective trajectory. It is a curve in the space of rays S(V), together with an impulsion attached to each ray. In the simplest example where the force is identically zero, the curve is a straight line and the impulsion a constant bivector. A striking feature of projective dynamics appears: the trajectories are not parameterized. Among the projective force fields corresponding to a central force, the one defining the Kepler problem is simpler than those corresponding to other homogeneities. Here the thrown ray describes a quadratic cone whose section by a hyperplane corresponds to a Keplerian conic. An original point of view on the hidden symmetries of the Kepler problem emerges, and clarifies some remarks due to Halphen and Appell. We also get the unexpected conclusion that there exists a notion of divergence-free field of projective forces if and only if dim V=4. No metric is involved in the axioms of projective dynamics.Comment: 20 pages, 4 figure

    Projective dynamics and first integrals

    Full text link
    We present the theory of tensors with Young tableau symmetry as an efficient computational tool in dealing with the polynomial first integrals of a natural system in classical mechanics. We relate a special kind of such first integrals, already studied by Lundmark, to Beltrami's theorem about projectively flat Riemannian manifolds. We set the ground for a new and simple theory of the integrable systems having only quadratic first integrals. This theory begins with two centered quadrics related by central projection, each quadric being a model of a space of constant curvature. Finally, we present an extension of these models to the case of degenerate quadratic forms.Comment: 39 pages, 2 figure

    Kustaanheimo-Stiefel Regularization and the Quadrupolar Conjugacy

    Get PDF
    In this note, we present the Kustaanheimo-Stiefel regularization in a symplectic and quaternionic fashion. The bilinear relation is associated with the moment map of the S1S^{1}- action of the Kustaanheimo-Stiefel transformation, which yields a concise proof of the symplecticity of the Kustaanheimo-Stiefel transformation symplectically reduced by this circle action. The relation between the Kustaanheimo-Stiefel regularization and the Levi-Civita regularization is established via the investigation of the Levi-Civita planes. A set of Darboux coordinates (which we call Chenciner-F\'ejoz coordinates) is generalized from the planar case to the spatial case. Finally, we obtain a conjugacy relation between the integrable approximating dynamics of the lunar spatial three-body problem and its regularized counterpart, similar to the conjugacy relation between the extended averaged system and the averaged regularized system in the planar case.Comment: 19 pages, corrected versio

    Qudits of composite dimension, mutually unbiased bases and projective ring geometry

    Full text link
    The d2d^2 Pauli operators attached to a composite qudit in dimension dd may be mapped to the vectors of the symplectic module Zd2\mathcal{Z}_d^{2} (Zd\mathcal{Z}_d the modular ring). As a result, perpendicular vectors correspond to commuting operators, a free cyclic submodule to a maximal commuting set, and disjoint such sets to mutually unbiased bases. For dimensions d=6, 10, 15, 12d=6,~10,~15,~12, and 18, the fine structure and the incidence between maximal commuting sets is found to reproduce the projective line over the rings Z6\mathcal{Z}_{6}, Z10\mathcal{Z}_{10}, Z15\mathcal{Z}_{15}, Z6×F4\mathcal{Z}_6 \times \mathbf{F}_4 and Z6×Z3\mathcal{Z}_6 \times \mathcal{Z}_3, respectively.Comment: 10 pages (Fast Track communication). Journal of Physics A Mathematical and Theoretical (2008) accepte

    Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function ?

    Full text link
    We study the commutation relations within the Pauli groups built on all decompositions of a given Hilbert space dimension qq, containing a square, into its factors. Illustrative low dimensional examples are the quartit (q=4q=4) and two-qubit (q=22q=2^2) systems, the octit (q=8q=8), qubit/quartit (q=2×4q=2\times 4) and three-qubit (q=23q=2^3) systems, and so on. In the single qudit case, e.g. q=4,8,12,...q=4,8,12,..., one defines a bijection between the σ(q)\sigma (q) maximal commuting sets [with σ[q)\sigma[q) the sum of divisors of qq] of Pauli observables and the maximal submodules of the modular ring Zq2\mathbb{Z}_q^2, that arrange into the projective line P1(Zq)P_1(\mathbb{Z}_q) and a independent set of size σ(q)−ψ(q)\sigma (q)-\psi(q) [with ψ(q)\psi(q) the Dedekind psi function]. In the multiple qudit case, e.g. q=22,23,32,...q=2^2, 2^3, 3^2,..., the Pauli graphs rely on symplectic polar spaces such as the generalized quadrangles GQ(2,2) (if q=22q=2^2) and GQ(3,3) (if q=32q=3^2). More precisely, in dimension pnp^n (pp a prime) of the Hilbert space, the observables of the Pauli group (modulo the center) are seen as the elements of the 2n2n-dimensional vector space over the field Fp\mathbb{F}_p. In this space, one makes use of the commutator to define a symplectic polar space W2n−1(p)W_{2n-1}(p) of cardinality σ(p2n−1)\sigma(p^{2n-1}), that encodes the maximal commuting sets of the Pauli group by its totally isotropic subspaces. Building blocks of W2n−1(p)W_{2n-1}(p) are punctured polar spaces (i.e. a observable and all maximum cliques passing to it are removed) of size given by the Dedekind psi function ψ(p2n−1)\psi(p^{2n-1}). For multiple qudit mixtures (e.g. qubit/quartit, qubit/octit and so on), one finds multiple copies of polar spaces, ponctured polar spaces, hypercube geometries and other intricate structures. Such structures play a role in the science of quantum information.Comment: 18 pages, version submiited to J. Phys. A: Math. Theo

    Weak mutually unbiased bases

    Full text link
    Quantum systems with variables in Z(d){\mathbb Z}(d) are considered. The properties of lines in the Z(d)×Z(d){\mathbb Z}(d)\times {\mathbb Z}(d) phase space of these systems, are studied. Weak mutually unbiased bases in these systems are defined as bases for which the overlap of any two vectors in two different bases, is equal to d−1/2d^{-1/2} or alternatively to one of the di−1/2,0d_i^{-1/2},0 (where did_i is a divisor of dd apart from d,1d,1). They are designed for the geometry of the Z(d)×Z(d){\mathbb Z}(d)\times {\mathbb Z}(d) phase space, in the sense that there is a duality between the weak mutually unbiased bases and the maximal lines through the origin. In the special case of prime dd, there are no divisors of dd apart from 1,d1,d and the weak mutually unbiased bases are mutually unbiased bases

    The Definition of Mach's Principle

    Full text link
    Two definitions of Mach's principle are proposed. Both are related to gauge theory, are universal in scope and amount to formulations of causality that take into account the relational nature of position, time, and size. One of them leads directly to general relativity and may have relevance to the problem of creating a quantum theory of gravity.Comment: To be published in Foundations of Physics as invited contribution to Peter Mittelstaedt's 80th Birthday Festschrift. 30 page

    Pauli graphs, Riemann hypothesis, Goldbach pairs

    Full text link
    Let consider the Pauli group Pq=\mathcal{P}_q= with unitary quantum generators XX (shift) and ZZ (clock) acting on the vectors of the qq-dimensional Hilbert space via X∣s>=∣s+1>X|s> =|s+1> and Z∣s>=ωs∣s>Z|s> =\omega^s |s>, with ω=exp⁥(2iπ/q)\omega=\exp(2i\pi/q). It has been found that the number of maximal mutually commuting sets within Pq\mathcal{P}_q is controlled by the Dedekind psi function ψ(q)=q∏p∣q(1+1p)\psi(q)=q \prod_{p|q}(1+\frac{1}{p}) (with pp a prime) \cite{Planat2011} and that there exists a specific inequality ψ(q)q>eÎłlog⁥log⁥q\frac{\psi (q)}{q}>e^{\gamma}\log \log q, involving the Euler constant ÎłâˆŒ0.577\gamma \sim 0.577, that is only satisfied at specific low dimensions q∈A={2,3,4,5,6,8,10,12,18,30}q \in \mathcal {A}=\{2,3,4,5,6,8,10,12,18,30\}. The set A\mathcal{A} is closely related to the set AâˆȘ{1,24}\mathcal{A} \cup \{1,24\} of integers that are totally Goldbach, i.e. that consist of all primes p2p2) is equivalent to Riemann hypothesis. Introducing the Hardy-Littlewood function R(q)=2C2∏p∣np−1p−2R(q)=2 C_2 \prod_{p|n}\frac{p-1}{p-2} (with C2∌0.660C_2 \sim 0.660 the twin prime constant), that is used for estimating the number g(q)∌R(q)qln⁥2qg(q) \sim R(q) \frac{q}{\ln^2 q} of Goldbach pairs, one shows that the new inequality R(Nr)log⁥log⁥NrâȘ†eÎł\frac{R(N_r)}{\log \log N_r} \gtrapprox e^{\gamma} is also equivalent to Riemann hypothesis. In this paper, these number theoretical properties are discusssed in the context of the qudit commutation structure.Comment: 11 page
    • 

    corecore