86 research outputs found
New insights into the enzymatic mechanism of human chitotriosidase (CHIT1) catalytic domain by atomic resolution X-ray diffraction and hybrid QM/MM
Chitotriosidase (CHIT1) is a human chitinase belonging to the highly conserved glycosyl hydrolase family 18 (GH18). GH18 enzymes hydrolyze chitin, an N-acetylglucosamine polymer synthesized by lower organisms for structural purposes. Recently, CHIT1 has attracted attention owing to its upregulation in immune-system disorders and as a marker of Gaucher disease. The 39 kDa catalytic domain shows a conserved cluster of three acidic residues, Glu140, Asp138 and Asp136, involved in the hydrolysis reaction. Under an excess concentration of substrate, CHIT1 and other homologues perform an additional activity, transglycosylation. To understand the catalytic mechanism of GH18 chitinases and the dual enzymatic activity, the structure and mechanism of CHIT1 were analyzed in detail. The resolution of the crystals of the catalytic domain was improved from 1.65 Ă
(PDB entry 1waw ) to 0.95-1.10 Ă
for the apo and pseudo-apo forms and the complex with chitobiose, allowing the determination of the protonation states within the active site. This information was extended by hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. The results suggest a new mechanism involving changes in the conformation and protonation state of the catalytic triad, as well as a new role for Tyr27, providing new insights into the hydrolysis and transglycosylation activities.Fil: Fadel, Firas. Centre National de la Recherche Scientifique; Francia. Institut de GĂ©nĂ©tique et de Biologie MolĂ©culaire et Cellulaire; FranciaFil: Zhao, Yuguang. University of Oxford; Reino UnidoFil: Cachau, Raul. Frederick National Laboratory for Cancer Research; Estados UnidosFil: Cousido Siah, Alexandra. Centre National de la Recherche Scientifique; Francia. Institut de GĂ©nĂ©tique et de Biologie MolĂ©culaire et Cellulaire; FranciaFil: Ruiz, Francesc X.. Centre National de la Recherche Scientifique; Francia. Institut de GĂ©nĂ©tique et de Biologie MolĂ©culaire et Cellulaire; FranciaFil: Harlos, Karl. University of Oxford; Reino UnidoFil: Howard, Eduardo Ignacio. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de FĂsica de LĂquidos y Sistemas BiolĂłgicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂsica de LĂquidos y Sistemas BiolĂłgicos; Argentina. Centre National de la Recherche Scientifique; Francia. Institut de GĂ©nĂ©tique et de Biologie MolĂ©culaire et Cellulaire; FranciaFil: Mitschler, Andre. Centre National de la Recherche Scientifique; Francia. Institut de GĂ©nĂ©tique et de Biologie MolĂ©culaire et Cellulaire; FranciaFil: Podjarny, Alberto Daniel. Centre National de la Recherche Scientifique; Francia. Institut de GĂ©nĂ©tique et de Biologie MolĂ©culaire et Cellulaire; Franci
New insights into the enzymatic mechanism of human chitotriosidase (CHIT1) catalytic domain by atomic resolution X-ray diffraction and hybrid QM/MM
Chitotriosidase (CHIT1) is a human chitinase belonging to the highly conserved glycosyl hydrolase family 18 (GH18). GH18 enzymes hydrolyze chitin, an N-acetylglucosamine polymer synthesized by lower organisms for structural purposes. Recently, CHIT1 has attracted attention owing to its upregulation in immune-system disorders and as a marker of Gaucher disease. The 39 kDa catalytic domain shows a conserved cluster of three acidic residues, Glu140, Asp138 and Asp136, involved in the hydrolysis reaction. Under an excess concentration of substrate, CHIT1 and other homologues perform an additional activity, transglycosylation. To understand the catalytic mechanism of GH18 chitinases and the dual enzymatic activity, the structure and mechanism of CHIT1 were analyzed in detail. The resolution of the crystals of the catalytic domain was improved from 1.65 Ă
(PDB entry 1waw ) to 0.95-1.10 Ă
for the apo and pseudo-apo forms and the complex with chitobiose, allowing the determination of the protonation states within the active site. This information was extended by hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. The results suggest a new mechanism involving changes in the conformation and protonation state of the catalytic triad, as well as a new role for Tyr27, providing new insights into the hydrolysis and transglycosylation activities.Instituto de FĂsica de LĂquidos y Sistemas BiolĂłgico
Structural Basis of Outstanding Multivalent Effects in Jack Bean α-Mannosidase Inhibition
Multivalent design of glycosidase inhibitors is a promising strategy for the treatment of diseases involving enzymatic hydrolysis of glycosidic bonds in carbohydrates. An essential prerequisite for successful applications is the atomicâlevel understanding of how outstanding binding enhancement occurs with multivalent inhibitors. Herein we report the first highâresolution crystal structures of the Jack bean αâmannosidase (JBαâman) in apo and inhibited states. The threeâdimensional structure of JBαâman in complex with the multimeric cyclopeptoidâbased inhibitor displaying the largest binding enhancements reported so far provides decisive insight into the molecular mechanisms underlying multivalent effects in glycosidase inhibition.Instituto de FĂsica de LĂquidos y Sistemas BiolĂłgico
Design, synthesis, structure-activity relationships and X-ray structural studies of novel 1-oxopyrimido[4,5-c]quinoline-2-acetic acid derivatives as selective and potent inhibitors of human aldose reductase
Human aldose reductase (AKR1B1, AR) is a key enzyme of the polyol pathway, catalyzing the reduction of glucose to sorbitol at high glucose concentrations, as those found in diabetic condition. Indeed, AKR1B1 overexpression is related to diabetes secondary complications and, in some cases, with cancer. For many years, research has been focused on finding new AKR1B1 inhibitors (ARIs) to overcome these diseases. Despite the efforts, most of the new drug candidates failed because of their poor pharmacokinetic properties and/or unacceptable side effects. Here we report the synthesis of a series of 1-oxopyrimido[4,5-c]quinoline-2-acetic acid derivatives as novel ARIs. IC50 assays and X-ray crystallographic studies proved that these compounds are promising hits for further drug development, with high potency and selectivity against AKR1B1. Based on the determined X-ray structures with hit-to-lead compounds, we designed and synthesized a second series that yielded lead compound 68 (Kiapp vs. AKR1B1 = 73 nM). These compounds are related to the previously reported 2-aminopyrimido[4,5-c]quinolin-1(2H)-ones, which exhibit antimitotic activity. Regardless of their similarity, the 2-amino compounds are unable to inhibit AKR1B1 while the 2-acetic acid derivatives are not cytotoxic against fibrosarcoma HT-1080 cells. Thus, the replacement of the amino group by an acetic acid moiety changes their biological activity, improving their potency as ARIs
Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants
Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity.Fil: Noguera, MartĂn Ezequiel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Vazquez, Diego Sebastian. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Ferrer Sueta, Gerardo. Universidad de la RepĂșblica; UruguayFil: Agudelo Suarez, William Armando. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Howard, Eduardo Ignacio. UniversitĂ© de Strasbourg; Francia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Rasia, Rodolfo Maximiliano. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de BiologĂa Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de BiologĂa Molecular y Celular de Rosario; ArgentinaFil: Manta, Bruno. Universidad de la RepĂșblica; UruguayFil: Cousido Siah, Alexandra. UniversitĂ© de Strasbourg; FranciaFil: Mitschler, AndrĂ©. UniversitĂ© de Strasbourg; FranciaFil: Podjarny, Alberto Daniel. UniversitĂ© de Strasbourg; FranciaFil: Santos, Javier. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; Argentin
Discovery of (R)-2-Amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic Acid and Congeners As Highly Potent Inhibitors of Human Arginases I and II for Treatment of Myocardial Reperfusion Injury
Recent efforts to identify treatments for myocardial ischemia reperfusion injury have resulted in the discovery of a novel series of highly potent α,α-disubstituted amino acid-based arginase inhibitors. The lead candidate, (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid, compound 9, inhibits human arginases I and II with IC50s of 223 and 509 nM, respectively, and is active in a recombinant cellular assay overexpressing human arginase I (CHO cells). It is 28% orally bioavailable and significantly reduces the infarct size in a rat model of myocardial ischemia/reperfusion injury. Herein, we report the design, synthesis, and structureâactivity relationships (SAR) for this novel series of inhibitors along with pharmacokinetic and in vivo efficacy data for compound 9 and X-ray crystallography data for selected lead compounds cocrystallized with arginases I and II.Fil: Van Zandt, Michael C.. Institutes for Pharmaceutical Discovery; Estados UnidosFil: Whitehouse, Darren L.. Institutes for Pharmaceutical Discovery; Estados UnidosFil: Golebiowski, Adam. Institutes for Pharmaceutical Discovery; Estados UnidosFil: Ji, Min Koo. Institutes for Pharmaceutical Discovery; Estados UnidosFil: Zhang, Mingbao. Institutes for Pharmaceutical Discovery; Estados UnidosFil: Beckett, R. Paul. Institutes for Pharmaceutical Discovery; Estados UnidosFil: Jagdmann, G. Erik. Institutes for Pharmaceutical Discovery; Estados UnidosFil: Ryder, Todd R.. Institutes for Pharmaceutical Discovery; Estados UnidosFil: Sheeler, Ryan. Institutes for Pharmaceutical Discovery; Estados UnidosFil: Andreoli, Monica. Institutes for Pharmaceutical Discovery; Estados UnidosFil: Conway, Bruce. Institutes for Pharmaceutical Discovery; Estados UnidosFil: Mahboubi, Keyvan. Institutes for Pharmaceutical Discovery; Estados UnidosFil: DâAngelo, Gerard. Institutes for Pharmaceutical Discovery; Estados UnidosFil: Mitschler, Andre. UniversitĂ© de Strasbourg; FranciaFil: Cousido Siah, Alexandra. UniversitĂ© de Strasbourg; FranciaFil: Ruiz, Frances X.. UniversitĂ© de Strasbourg; FranciaFil: Howard, Eduardo Ignacio. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de FĂsica de LĂquidos y Sistemas BiolĂłgicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂsica de LĂquidos y Sistemas BiolĂłgicos; Argentina. UniversitĂ© de Strasbourg; FranciaFil: Podjarny, Alberto Daniel. UniversitĂ© de Strasbourg; FranciaFil: Schroeter, Hagen. Mars Incorporated; Estados Unido
Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53
The p53 pro-apoptotic tumor suppressor is mutated or functionally altered in most cancers. In epithelial tumors induced by âhigh-riskâ mucosal Human Papillomaviruses (hrm-HPVs), including human cervical carcinoma and a growing number of head-and-neck cancers (1), p53 is degraded by the viral oncoprotein E6 (2). In this process, E6 binds to a short LxxLL consensus sequence within the cellular ubiquitin ligase E6AP (3). Subsequently, the E6/E6AP heterodimer recruits and degrades p53 (4). Neither E6 nor E6AP are separately able to recruit p53 (3,5), and the precise mode of assembly of E6, E6AP and p53 is unknown. Here, we solved the crystal structure of a ternary complex comprising full-length HPV16 E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumor suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against HPV-mediated oncogenesis
Identification of a novel polyfluorinated compound as a lead to inhibit human enzymes aldose reductase and AKR1B10 : structure determination of both ternary complexes and implications for drug design
Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved ([alpha]/[beta])8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-ÂNADP+-JF0064 complex has been determined at 0.85 Ă
resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystalloÂgraphic structure of the corresponding AKR1B10-NADP+-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts
Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants
Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity.PMC529941
- âŠ