189 research outputs found

    Commentary on Metabolic Health Disparities Affecting the Rio Grande Valley Mexican American Population: Seeking Answers Using Animal Models

    Get PDF
    Mexican Americans living in the Rio Grande Valley (RGV) have a high prevalence of type 2 diabetes (T2D). The US–Mexico border frontier has a unique blended culture of American lifestyle and Mexican traditions. Some examples of the cultural traditions are the food and the use of herbal medicine, but these traditions are in danger of disappearing after a very short number of generations living in the United States. This article describes the use of animal models under experimental conditions to solve practical questions (etiology or treatment). We performed studies with murine (ie, mouse and rat) models to elucidate the characteristics of medicinal plants that modulate glucose metabolism and inflammation and protect from bone loss, complications related to T2D. The University of Texas Rio Grande Valley researchers also have collaborated with the University of Texas Health Science Center at San Antonio researchers in performing studies in nonhuman primates (NHP) (ie, baboon) to understand the effect of T2D and diets on organs and tissues. With the new knowledge gained from the use of animal models (murine and NHP), new therapies are discovered for the prevention and treatment of T2D and its related complications, such as bone loss and nonalcoholic fatty liver disease, all of which the Mexican American and other human populations are at high risk of developing

    Predictive models of insulin resistance derived from simple morphometric and biochemical indices related to obesity and the metabolic syndrome in baboons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-human primates are valuable models for the study of insulin resistance and human obesity. In baboons, insulin sensitivity levels can be evaluated directly with the euglycemic clamp and is highly predicted by adiposity, metabolic markers of obesity and impaired glucose metabolism (i.e. percent body fat by DXA and HbA<sub>1c</sub>). However, a simple method to screen and identify obese insulin resistant baboons for inclusion in interventional studies is not available.</p> <p>Methods</p> <p>We studied a population of twenty baboons with the euglycemic clamp technique to characterize a population of obese nondiabetic, insulin resistant baboons, and used a multivariate linear regression analysis (adjusted for gender) to test different predictive models of insulin sensitivity (insulin-stimulated glucose uptake = Rd) using abdominal circumference and fasting plasma insulin. Alternatively, we tested in a separate baboon population (n = 159), a simpler model based on body weight and fasting plasma glucose to predict the whole-body insulin sensitivity (Rd/SSPI) derived from the clamp.</p> <p>Results</p> <p>In the first model, abdominal circumference explained 59% of total insulin mediated glucose uptake (Rd). A second model, which included fasting plasma insulin (log transformed) and abdominal circumference, explained 64% of Rd. Finally, the model using body weight and fasting plasma glucose explained 51% of Rd/SSPI. Interestingly, we found that percent body fat was directly correlated with the adipocyte insulin resistance index (r = 0.755, p < 0.0001).</p> <p>Conclusion</p> <p>In baboons, simple morphometric measurements of adiposity/obesity, (i.e. abdominal circumference), plus baseline markers of glucose/lipid metabolism, (i.e. fasting plasma glucose and insulin) provide a feasible method to screen and identify overweight/obese insulin resistant baboons for inclusion in interventional studies aimed to study human obesity, insulin resistance and type 2 diabetes mellitus.</p

    Project: Center for Diabetes and Metabolism [Centro de Diabetes y Metabolismo: CeDiMet], a collaborative dream comes true

    Get PDF
    Reynosa urban area has 690,000 inhabitants (384,000 adults \u3e20 years old), 35% moved from other states. The use of cell phones is in 81%, personal computer or laptop with 29%. The prevalence of overweight is 39%, obesity 36%, and T2D 13%. The expected adult population with T2D is 49,900 individuals. The are 5 clinics prepared to attend T2D, and few with specialized personnel. The CeDiMet is a collaborative clinic involving health personnel and researchers from the Universidad Mexico Americana del Norte, Universidad Autonoma de Tamaulipas, Hospital General de Mexico “Dr. Eduardo Liceaga”, University of Texas Rio Grande Valley, and the Texas Diabetes Institute in San Antonio. The funding source comes from private companies in Reynosa. The clinical structure includes physicians, nurses, nutritionists, psychologists, and a section for telemedicine for consulting specialists from USA and Mexico City. Besides clinical attendance, the CeDiMet will conduct educational activities in offices, factories, churches, and schools for prevention of obesity complications (T2D and hypertension), early detection of diabetic foot, fatty liver, and endothelial damage. “Tree of Health in the Family” is a program to encourage youth to know and understand the metabolic problems in their families to focus on prevention. Recently, we obtained a grant from COTACyT to explore the effect of COVID-19 in a cohort of 200 students and their families. The analysis of post-traumatic stress due to confinement and antibodies concentration to detect contacts and its association with metabolic problems is an example of the research we can perform

    A Pliocene-Pleistocene continental biota from Venezuela

    Get PDF
    The Pliocene-Pleistocene transition in the Neotropics is poorly understood despite the major climatic changes that occurred at the onset of the Quaternary. The San Gregorio Formation, the younger unit of the Urumaco Sequence, preserves a fauna that documents this critical transition. We report stingrays, freshwater bony fishes, amphibians, crocodiles, lizards, snakes, aquatic and terrestrial turtles, and mammals. A total of 49 taxa are reported from the Vergel Member (late Pliocene) and nine taxa from the Cocuiza Member (Early Pleistocene), with 28 and 18 taxa reported for the first time in the Urumaco sequence and Venezuela, respectively. Our findings include the first fossil record of the freshwater fishes Megaleporinus, Schizodon, Amblydoras, Scorpiodoras, and the pipesnake Anilius scytale, all from Pliocene strata. The late Pliocene and Early Pleistocene ages proposed here for the Vergel and Cocuiza members, respectively, are supported by their stratigraphic position, palynology, nannoplankton, and 86 Sr/ 88 Sr dating. Mammals from the Vergel Member are associated with the first major pulse of the Great American Biotic Interchange. In contrast to the dry conditions prevailing today, the San Gregorio Formation documents mixed open grassland/forest areas surrounding permanent freshwater systems, following the isolation of the northern South American basin from western Amazonia. These findings support the hypothesis that range contraction of many taxa to their current distribution in northern South America occurred rapidly during at least the last 1.5 million years

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore