3,506 research outputs found
Indigenous children's multimodal communication of emotions through visual imagery
Billions of images are shared worldwide on the internet via social platforms like Instagram, Pinterest, Snapchat and Twitter every few days. The social web and mobile devices make it quicker and easier than ever before for young people to communicate emotions through digital images. There is a need for greater knowledge of how to educate children and young people formally in the sophisticated, multimodal language of emotions. This includes semiotic choices in visual composition, such as gaze, facial expression, posture, framing, actor-goal relations, camera angles, backgrounds, props, lighting, shadows and colour. In particular, enabling Indigenous students to interpret and communicate emotions in contemporary ways is vital because multimodal language skills are central to academic, behavioural and social outcomes. This paper reports original research of urban, Indigenous, upper primary students' visual imagery at school. A series of full-day, digital imagery workshops were conducted over several weeks with 56 students. The photography workshops formed part of a three-year participatory community research project with an Indigenous school in Southeast Queensland, Australia. The archived student images were organised and analysed to identify attitudinal meanings from the appraisal framework, tracing types and subtypes of affect, and their positive and negative forms. The research has significant implications for teaching students how to design high-quality, visual and digital images to evoke a wide range of positive and negative emotions, with particular considerations for Australian Indigenous students
Towards 99mTc- and Re-based multifunctional silica platforms for theranostic applications
Taking advantage of the radiation properties of 99mTc and 186/188Re and the photophysical characteristics of the {M(CO)3}+ moiety (M = Re), we developed a multifunctional silica platform with the theranostic pair 99mTc/Re with high potential for (nano)medical applications. Starting with a general screening to evaluate the most suitable mesoporous silica construct and the development of appropriate chelate systems, multifunctional mesoporous silica microparticles (SBA-15) were synthesized. These particles act as a model towards the synthesis of the corresponding nanoconstructs. The particles can be modified at the external surface with a targeting function and labeled with the {M(CO)3}+ moiety (M = 99mTc, Re) at the pore surface. Thus, a silica platform is realized, whose bioprofile is not altered by the loaded modalities. The described synthetic procedures can be applied to establish a target-specific theranostic nanoplatform, which enables the combination of fluorescence and radio imaging, with the possibility of radio- and chemotherapy
Cranial Anatomy and Paleoneurology of the Extinct Sloth Catonyx tarijensis (Xenarthra, Mylodontidae) From the Late Pleistocene of Oruro, Southwestern Bolivia
Extinct scelidotheriine sloths are among the most peculiar fossil mammals from South America. In recent decades, the external cranial anatomy of Pleistocene scelidotheres such as Scelidotherium, Catonyx, and Valgipes has been the subject of numerous studies, but their endocranial anatomy remains almost completely unknown. Today, computed tomographic (CT) scanning methodologies permit the exploration of previously inaccessible anatomical areas through a completely non-destructive process. For this reason, we undertook an analysis of the external and internal cranial anatomy of Catonyx tarijensis from the late Pleistocene of the Department of Oruro, in southwestern Bolivia. One particularly well-preserved specimen allowed detailed observation of all the main cranial osteological features, including the ear region and an almost complete hyoid apparatus, previously unknown for this taxon. Moreover, CT-scanning and subsequent elaboration of digital models of this specimen allowed observation of the brain cavity and cranial sinuses, and reconstruction of the trajectory of the main cranial nerves for the first time in an extinct scelidotheriine sloth. Additionally, we recovered the first three-dimensional reconstructions of the nasal cavity and the turbinates of an extinct sloth. In contrast to the usual depiction, the combined information from the external and internal anatomy suggests reduced lingual protrusion in Catonyx tarijensis, or at least a consistently more limited protrusion of the tongue in comparison with other mylodontid sloths such as Glossotherium robustum. The new morphological information recovered from this extinct sloth is compared with the available information for both extant and extinct forms, providing insights in the paleobiology of the extinct species. The present study reveals the importance of applying these novel non-destructive techniques to elucidate the evolutionary history of sloths.Fil: Boscaini, Alberto. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales; ArgentinaFil: Iurino, Dawid A.. UniversitĂ degli studi di Roma "La Sapienza"; ItaliaFil: Mamani Quispe, Bernardino. Museo Nacional de Historia Natural de la Paz; BoliviaFil: Andrade Flores, RubĂ©n. Museo Nacional de Historia Natural de la Paz; BoliviaFil: Sardella, Raffaele. UniversitĂ degli studi di Roma "La Sapienza"; ItaliaFil: Pujos, François Roger Francis. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂa, GlaciologĂa y Ciencias Ambientales; ArgentinaFil: Gaudin, Timothy. University Of Tennessee At Chattanooga; Estados Unido
Characterization of essential eggshell proteins from Aedes aegypti mosquitoes
Background: Up to 40% of the world population live in areas where mosquitoes capable of transmitting the dengue virus, including Aedes aegypti, coexist with humans. Understanding how mosquito egg development and oviposition are regulated at the molecular level may provide new insights into novel mosquito control strategies. Previously, we identified a protein named eggshell organizing factor 1 (EOF1) that when knocked down with RNA interference (RNAi) resulted in non-melanized and fragile eggs that did not contain viable embryos. Results: In this current study, we performed a comprehensive RNAi screen of putative A. aegypti eggshell proteins to identify additional proteins that interact with intracellular EOF1. We identified several proteins essential for eggshell formation in A. aegypti and characterized their phenotypes through a combination of molecular and biochemical approaches. We found that Nasrat, Closca, and Polehole structural proteins, together with the Nudel serine protease, are indispensable for eggshell melanization and egg viability. While all four proteins are predominantly expressed in ovaries of adult females, Nudel messenger RNA (mRNA) expression is highly upregulated in response to blood feeding. Furthermore, we identified four additional secreted eggshell enzymes that regulated mosquito eggshell formation and melanization. These enzymes included three dopachrome-converting enzymes (DCEs) and one cysteine protease. All eight of these eggshell proteins were essential for proper eggshell formation. Interestingly, their eggshell surface topologies in response to RNAi did not phenocopy the effect of RNAi-EOF1, suggesting that additional mechanisms may influence how EOF1 regulates eggshell formation and melanization. Conclusions: While our studies did not identify a definitive regulator of EOF1, we did identify eight additional proteins involved in mosquito eggshell formation that may be leveraged for future control strategies
A blind test of photometric redshift prediction
Results of a blind test of photometric redshift predictions against
spectroscopic galaxy redshifts obtained in the Hubble Deep Field with the Keck
Telescope are presented. The best photometric redshift schemes predict
spectroscopic redshifts with a redshift accuracy of |Delta-z|<0.1 for more than
68 percent of sources and with |Delta-z|<0.3 for 100 percent, when
single-feature spectroscopic redshifts are removed from consideration. This
test shows that photometric redshift schemes work well at least when the
photometric data are of high quality and when the sources are at moderate
redshifts.Comment: 14 pp., accepted for publication in A
3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices.
Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long-term maintenance of healthy human stem-cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast-prototyping capabilities at both micro and macroscale, a proof-of-principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications
Decreased dentin tubules density and reduced thickness of peritubular dentin in hyperbilirubinemia-related green teeth
It is stated anecdotally that patients with liver diseases in childhood who develop green teeth have increased risk for rampant caries, which may be secondary to changes in dental structure. The aim of this study was to test the hypothesis that hyperbilirubinemia affects the dentin morphology of green teeth. Sixteen primary teeth were prepared and divided into two groups (green teeth, n = 8 and control, n = 8), which were transversely fractured across the cervical third of the dental crowns; dentin was prepared and sputter-coated with gold, and examined under a scanning electron microscope. The mean density and mean diameter of dentin tubules, as well as the thickness of peritubular dentin, were compared. Hyperbilirubinemia was associated with a decrease in the density of the dentin tubules (p< .01) and the thickness of peritubular dentin of green teeth (p< .01). There was a correlation between childhood hyperbilirubinemia and changes in the dentin morphology, including a decrease in the density of the dentin tubules and a reduction in the thickness of peritubular dentin in green teeth
- …