67 research outputs found

    Teambuilding, Innovation And The Engineering Communication Interface

    Get PDF
    Recent engineering industry-based research has identified a number of skill deficiencies in graduating engineers. Emphasis on communication and teamwork informed by attributes of self management, problem solving and mutual accountability have been recognized as important needs by The Engineering Accreditation Commission of ABET of the United States and are now required in undergraduate course material. The Engineering College at the American University of Sharjah has recognised this reality with the development of a course in language enhancement and professional communication centred on engineering multidisciplinary projects (EMDPs). This paper will outline four innovative practices that together inform this course; team-building, teamwork management, collaborative problem solving, resource management. Brief illustrative descriptions of: team-building through the use of the Belbin Team Role Inventory; management of teamwork development via planning and documentation; personnel and collaborative problem solving and interactive information sources hosted via a LibGuide will elaborate these innovative practices.

    Market restrictions on the lifting and transportation equipment production

    Full text link
    Over the past few decades, the trends of globalization and the markets expansion have been fundamental in the Russian and world economies. Such economic structure requires a large volume and range of transportation, the storage systems presence, the transported objects distribution. Logistics centers become an integral part of the economic development both for the regions and the country as a whole. Logistics centers, in turn, need specialized equipment that allows the most efficient use of existing storage areas. Reach truck is one of the most commonly used equipment in large A and A + warehouses. The article presents the estimating market restrictions method when the equipment cost determining taking into account the characteristics of the designed facility and the main competitors represented on the market. The method peculiarity is taking into account the technical and consumer characteristics of the investigated object, their comparison with the competitors' parameters. Based on this comparison, the possible product price is determined. The proposed technique allows to optimize equipment configuration and price depending on the consumers' needs. The proposed evaluation algorithm was tested on complex technical equipment (reach truck), but it should be noted that the proposed methodology is universal and can be applied to any technical object. © Published under licence by IOP Publishing Ltd

    Evaluation de la productivitĂ© de l’eau d’irrigation par la modĂ©lisation : le cas du maĂŻs sous goutte-Ă -goutte enterrĂ© en sol limoneux profond

    No full text
    The "more crop per drop" paradigm is behind considerable efforts to increasing the productivity of water consumed in irrigated agriculture. In this context, the evaluation of the agronomic performances of irrigation techniques and their ability to reduce the water consumption is a prerequisite for optimizing water use in irrigated agriculture. This thesis explores the potentials of Subsurface Drip Irrigation (SDI) within a modeling framework to evaluate its agronomic performance under various soil and climatic contexts. Many crop models allow today the prediction of crop yields as a function of, inter alia, the climatic conditions, the type of soil, the availability of water, of nutrient, and agricultural practices. These crop models usually couple the water and solute transfer processes in the soil to crop development. The water uptake of plant roots plays herein a key role of joining the processes in soil to those of the plant. Despite the strong spatial and temporal variability of the activity of root uptake, this activity is often presented in crop models with empirical “static” functions: the spatial distribution of water uptake depends on a predefined distribution of root density, but not on the type of irrigation. These empirical functions are found to be suitable for the simulation of root uptake when water is brought to the surface (sprinkler irrigation, gravity, etc.). However, their legitimacy under drip irrigation remains to be demonstrated. This thesis evaluates the performance of the empirical approaches for modeling root water uptake under drip irrigation, with the ultimate objective of introducing a simple crop model suitable for this technique. From the one hand, the role of the function defining the spatial distribution of root density is explored. Numerical simulations supported by field experiments allowed analyzing the phenomenon of "compensatory water uptake", which is exacerbated under localized irrigation. Considering this phenomenon in modeling was necessary for adequately predicting water consumption of the crop, the distribution of water in the soil, and especially drainage fluxes under SDI. From the other hand, the findings from the first study are taken into account in the development of SDICM, Subsurface Drip Irrigation Crop Model. SDICM is couples bidirectional water transfer process in the soil to crop growth. This model was confronted with field observations which allowed putting forward the importance of root water uptake process in the prediction of water profiles in cropped soils. Finally, an application example was conducted where the water productivity of maize under different pedo-climatic conditions was assessed using SDICM and a capacitive type model. The purpose of the comparison is to highlight the importance of simulating bidirectional soil-water transfer in the context of SDI.Sous le paradigme de « more crop per drop », augmenter la productivitĂ© de l’eau consommĂ©e en agriculture irriguĂ©e est devenue l’un des points majeurs du dĂ©veloppement en systĂšmes d’irrigation. Dans ce contexte, Ă©valuer les performances des techniques d’irrigation et leur aptitude Ă  rĂ©duire la consommation en eau est une condition prĂ©alable Ă  l’optimisation de l’utilisation de l’eau en agriculture. La technique d’irrigation dont il est question dans ce travail de thĂšse est le goutte-Ă -goutte enterrĂ© (GGE) que l’on souhaite modĂ©liser afin d’évaluer ses performances agronomiques dans divers contextes pĂ©doclimatiques. De nombreux modĂšles de cultures permettent aujourd’hui de prĂ©dire le rendement agricole en fonction, inter allia, des conditions climatiques, du type de sol, de la disponibilitĂ© de l’eau, des Ă©lĂ©ments nutritif et des pratiques agricoles. Ces modĂšles de cultures couplent gĂ©nĂ©ralement les processus de transfert d’eau et des solutĂ©s dans le sol au dĂ©veloppement vĂ©gĂ©tatif des cultures. L’extraction de l’eau par les racines des plantes y joue le rĂŽle de jonction entre le Sol et la Plante. MalgrĂ© la forte variabilitĂ© spatio-temporelle de l’activitĂ© de l’extraction racinaire, cette activitĂ© est souvent prĂ©sentĂ©e dans les modĂšles de cultures par des fonctions empiriques « statiques » : la distribution spatiale de l’extraction de l’eau du sol dĂ©pend d’une forme prĂ©dĂ©finie de la densitĂ© racinaire mais non du type d’irrigation. Ces fonctions empiriques s’avĂšrent ĂȘtre adaptĂ©es Ă  la simulation de l’extraction racinaire lorsque l’eau est apportĂ©e Ă  la surface du sol (irrigation par aspersion, gravitaire, etc.). Cependant, leur lĂ©gitimitĂ© sous irrigation localisĂ©e reste Ă  dĂ©montrer. La prĂ©sente thĂšse tente d’évaluer la performance de l’approche empirique pour modĂ©liser l’extraction de l’eau sous l’irrigation localisĂ©e par GGE, avec pour objectif d’élaborer un modĂšle de cultures opĂ©rationnel adaptĂ© Ă  ce type d’irrigation. Dans un premier temps, le rĂŽle de la fonction dĂ©finissant la distribution spatiale de la densitĂ© racinaire est analysĂ©. Des simulations numĂ©riques appuyĂ©es par des expĂ©rimentations de terrain ont permis d’analyser le phĂ©nomĂšne de «compensation de l’extraction racinaire », phĂ©nomĂšne plus particuliĂšrement exacerbĂ© en irrigation localisĂ©e. En rendre compte par la modĂ©lisation s’est avĂ©rĂ© nĂ©cessaire pour prĂ©dire la consommation en eau des cultures, la distribution de l’eau dans le sol, et surtout les flux de drainage sous GGE. Dans un second temps, les fruits de cette analyse ont Ă©tĂ© valorisĂ©s par le dĂ©veloppement de SDICM, un modĂšle de cultures couplant les processus de transfert bidirectionnel de l’eau dans le sol au dĂ©veloppement vĂ©gĂ©tatif de la culture. Ce modĂšle a Ă©tĂ© confrontĂ© aux observations de terrain ce qui a permit de constater l’importance du processus d’extraction racinaire dans la prĂ©diction des profils hydriques en sols cultivĂ©s. Finalement, les rĂ©sultats d’ordre agronomiques des essais conduits au site d’études ont Ă©tĂ© synthĂ©tisĂ©s afin d’évaluer les performances de l’irrigation par GGE pour la production de maĂŻs dans le contexte climatique du Sud de la France

    Evaluating irrigation water productivity by modeling : example of subsurface drip-irrigated maize in deep loamy soil

    No full text
    Sous le paradigme de « more crop per drop », augmenter la productivitĂ© de l’eau consommĂ©e en agriculture irriguĂ©e est devenue l’un des points majeurs du dĂ©veloppement en systĂšmes d’irrigation. Dans ce contexte, Ă©valuer les performances des techniques d’irrigation et leur aptitude Ă  rĂ©duire la consommation en eau est une condition prĂ©alable Ă  l’optimisation de l’utilisation de l’eau en agriculture. La technique d’irrigation dont il est question dans ce travail de thĂšse est le goutte-Ă -goutte enterrĂ© (GGE) que l’on souhaite modĂ©liser afin d’évaluer ses performances agronomiques dans divers contextes pĂ©doclimatiques.De nombreux modĂšles de cultures permettent aujourd’hui de prĂ©dire le rendement agricole en fonction, inter allia, des conditions climatiques, du type de sol, de la disponibilitĂ© de l’eau, des Ă©lĂ©ments nutritif et des pratiques agricoles. Ces modĂšles de cultures couplent gĂ©nĂ©ralement les processus de transfert d’eau et des solutĂ©s dans le sol au dĂ©veloppement vĂ©gĂ©tatif des cultures. L’extraction de l’eau par les racines des plantes y joue le rĂŽle de jonction entre le Sol et la Plante.MalgrĂ© la forte variabilitĂ© spatio-temporelle de l’activitĂ© de l’extraction racinaire, cette activitĂ© est souvent prĂ©sentĂ©e dans les modĂšles de cultures par des fonctions empiriques « statiques » : la distribution spatiale de l’extraction de l’eau du sol dĂ©pend d’une forme prĂ©dĂ©finie de la densitĂ© racinaire mais non du type d’irrigation. Ces fonctions empiriques s’avĂšrent ĂȘtre adaptĂ©es Ă  la simulation de l’extraction racinaire lorsque l’eau est apportĂ©e Ă  la surface du sol (irrigation par aspersion, gravitaire, etc.). Cependant, leur lĂ©gitimitĂ© sous irrigation localisĂ©e reste Ă  dĂ©montrer.La prĂ©sente thĂšse tente d’évaluer la performance de l’approche empirique pour modĂ©liser de l’extraction de l’eau sous l’irrigation localisĂ©e par GGE, avec pour objectif d’élaborer un modĂšle de cultures opĂ©rationnel adaptĂ© Ă  ce type d’irrigation.Dans un premier temps, le rĂŽle de la fonction dĂ©finissant la distribution spatiale de la densitĂ© racinaire est analysĂ©. Des simulations numĂ©riques appuyĂ©es par des expĂ©rimentations de terrain ont permis d’analyser le phĂ©nomĂšne de « compensation de l’extraction racinaire », phĂ©nomĂšne plus particuliĂšrement exacerbĂ© en irrigation localisĂ©e. En rendre compte par la modĂ©lisation s’est avĂ©rĂ© nĂ©cessaire pour prĂ©dire la consommation en eau des cultures, la distribution de l’eau dans le sol, et surtout les flux de drainage sous GGE.Dans un second temps, les fruits de cette analyse ont Ă©tĂ© valorisĂ©s par le dĂ©veloppement de SDICM, un modĂšle de cultures couplant les processus de transfert bidirectionnel de l’eau dans le sol au dĂ©veloppement vĂ©gĂ©tatif de la culture. Ce modĂšle a Ă©tĂ© confrontĂ© aux observations de terrain ce qui a permis de constater l’importance du processus d’extraction racinaire dans la prĂ©diction des profils hydriques en sols cultivĂ©s.Finalement, les rĂ©sultats d'ordre agronomiques des essais conduits au site d'Ă©tudes ont Ă©tĂ© synthĂ©tisĂ©s afin d'Ă©valuer les performances de l'irrigation par GGE pour la production de maĂŻs dans le contexte climatique du Sud de la France.The "more crop per drop" paradigm is behind considerable efforts to increasing the productivity of water consumed in irrigated agriculture. In this context, the evaluation of the agronomic performances of irrigation techniques and their ability to reduce the water consumption is a prerequisite for optimizing water use in irrigated agriculture. This thesis explores the potentials of Subsurface Drip Irrigation (SDI) within a modeling framework to evaluate its agronomic performance under various soil and climatic contexts.Many crop models allow today the prediction of crop yields as a function of, inter alia, the climatic conditions, the type of soil, the availability of water, of nutrient, and agricultural practices. These crop models usually couple the water and solute transfer processes in the soil to crop development. The water uptake of plant roots plays herein a key role of joining the processes in soil to those of the plant.Despite the strong spatial and temporal variability of the activity of root uptake, this activity is often presented in crop models with empirical “static” functions: the spatial distribution of water uptake depends on a predefined distribution of root density, but not on the type of irrigation. These empirical functions are found to be suitable for the simulation of root uptake when water is brought to the surface (sprinkler irrigation, gravity, etc.). However, their legitimacy under drip irrigation remains to be demonstrated.This thesis evaluates the performance of the empirical approaches for modeling root water uptake under drip irrigation, with the ultimate objective of introducing a simple crop model suitable for this technique.From the one hand, the role of the function defining the spatial distribution of root density is explored. Numerical simulations supported by field experiments allowed analyzing the phenomenon of "compensatory water uptake", which is exacerbated under localized irrigation. Considering this phenomenon in modeling was necessary for adequately predicting water consumption of the crop, the distribution of water in the soil, and especially drainage fluxes under SDI.From the other hand, the findings from the first study are taken into account in the development of SDICM, Subsurface Drip Irrigation Crop Model. SDICM is couples bidirectional water transfer process in the soil to crop growth. This model was confronted with field observations which allowed putting forward the importance of root water uptake process in the prediction of water profiles in cropped soils.Finally, an application example was conducted where the water productivity of maize under different pedo-climatic conditions was assessed using SDICM and a capacitive type model. The purpose of the comparison is to highlight the importance of simulating bidirectional soil-water transfer in the context of SDI

    The Effect of House Dust Mites and Allergic Airway Inflammation on Lung Carcinogenesis

    No full text
    Unlike other lung diseases such as chronic obstructive pulmonary disorder (COPD), the relationship between asthma and lung cancer has not been well established. However, our studies conducted in mouse models of asthma suggest that asthma represent a potential risk for lung cancer. The mechanism behind how asthma promotes lung cancer development still needs further study; however, we found that chronic airway inflammation was important for this effect. Furthermore, adaptive immunity was found to not play a significant role in the initiation of lung cancer development but may impact the regulation of the growth of cancer cells. Finally, the consequences of allergic airway inflammation and its impact on lung cancer development are the subject of our current studies in our laboratory

    TLM time-domain modelling and the use of windowing profiles for frequency-domain transformations applied to microwave cavity resonators

    No full text
    This paper presents developments made to the TLM method in the time to frequency-domain transformation of the impulse response solution. An improvement to the technique by which the three-dimensional TLM time-domain method is post-processed is presented. It is shown that the selective choice of a particular data windowing profile plays a significant role in the accuracy of the results, clarity of output response and the extraction of the S-parameters
    • 

    corecore