4 research outputs found

    Molecular Dynamics Simulations to Study Drug Delivery Systems

    Get PDF
    Molecular dynamics simulation is a very powerful tool to understand biomolecular processes. In this chapter, we go over different applications of this methodology to drug delivery systems (DDS) carried out in the group. DDS—a formulation or a device that enables the introduction of a therapeutic substance in the body and improves its efficacy and safety by controlling the rate, time, and place of release of drugs—are an important component of drug development and therapeutics. Biocompatible nanoparticles are materials in the nanoscale that emerged as important players, improving efficacy of approved drugs, for example. The molecular understanding of the encapsulation process could be very helpful to guide the nanocarrier for a specific system. Here we discuss different applications of drug delivery carriers, such as liposomes, polymeric micelles, and polymersomes using atomistic and coarse grain (CG) molecular dynamics simulations

    Rational design of polymer-lipid nanoparticles for docetaxel delivery

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS (ARGENTINA)In this work, a stable nanocarrier for the anti-cancer drug docetaxel was rational designed. The nanocarrier was developed based on the solid lipid nanoparticle preparation process aiming to minimize the total amount of excipients used in the final formul1755664FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS (ARGENTINA)FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS (ARGENTINA)14/25372-014/14457-50131-201

    Calcium interactions with Cx26 hemmichannel: Spatial association between MD simulations biding sites and variant pathogenicity

    Get PDF
    Connexinophaties are a collective of diseases related to connexin channels and hemichannels. In particular many Cx26 alterations are strongly associated to human deafness. Calcium plays an important role on this structures regulation. Here, using calcium as a probe, extensive atomistic Molecular Dynamics simulations were performed on the Cx26 hemichannel embedded in a lipid bilayer. Exploring different initial conditions and calcium concentration, simulation reached ∼4 μs. Several analysis were carried out in order to reveal the calcium distribution and localization, such as electron density profiles, density maps and distance time evolution, which is directly associated to the interaction energy. Specific amino acid interactions with calcium and their stability were capture within this context. Few of these sites such as, GLU42, GLU47, GLY45 and ASP50, were already suggested in the literature. Besides, we identified novel calcium biding sites: ASP2, ASP117, ASP159, GLU114, GLU119, GLU120 and VAL226. To the best of our knowledge, this is the first time that these sites are reported within this context. Furthermore, since various pathologies involving the Cx26 hemichannel are associated with pathogenic variants in the corresponding CJB2 gene, using ClinVar, we were able to spatially associate the 3D positions of the identified calcium binding sites within the framework of this work with reported pathogenic variants in the CJB2 gene. This study presents a first step on finding associations between molecular features and pathological variants of the Cx26 hemichannel.Fil: Albano, Juan Manuel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Mussini, Nahuel. Universidad de Buenos Aires; ArgentinaFil: Toriano, Roxana Mabel. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Biomembranas; ArgentinaFil: Facelli, Julio C.. University of Utah; Estados UnidosFil: Ferraro, Marta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Pickholz, Mónica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentin
    corecore