166 research outputs found

    Processes of Late Cretaceous to Late Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey

    Get PDF
    The Lycian Taurides of SW Turkey consist of an allochthonous Mesozoic passive margin succession that was episodically detached from its autochthon and translated southeastwards between latest Cretaceous to Late Miocene times. A combination of structural analysis, sedimentology, palaeontology and geochemistry allows subdivision of this orogenic event into: (1) latest Cretaceous trench-passive margin collision causing ophiolite obduction and detachment of the Köycegiz Thrust Sheet; (2) Mid-Late Eocene continent-continent collision renewing southeastwards thrusting and causing detachment of the Teke Dere Thrust Sheet and Yavus Thrust Sheets; (3) Miocene extensional collapse of the orogen with southeastwards translation of the allochthon coeval with rift-basin formation in the hinterland

    The Wow Factor? A Comparative Study of the Development of Student Music Teachers' Talents in Scotland and Australia

    Get PDF
    For some time there has been debate about differing perspectives on musical gift and musical intelligence. One view is that musical gift is innate: that it is present in certain individuals from birth and that the task of the teacher is to develop the potential which is there. A second view is that musical gift is a complex concept which includes responses from individuals to different environments and communities (Howe and Sloboda, 1997). This then raises the possibility that musical excellence can be taught. We have already explored this idea with practising musicians (Stollery and McPhee, 2002). Our research has now expanded to include music teachers in formation, and, in this paper, we look at the influences in their musical development which have either 'crystallised' or 'paralysed' the musical talent which they possess. Our research has a comparative dimension, being carried out in Scotland and in Australia. We conclude that there are several key influences in the musical development of the individual, including home and community support, school opportunities and teaching styles and that there may be education and culture-specific elements to these influences

    Depositional setting, provenance and tectonic-volcanic setting of Eocene-Recent deep-sea sediments of the oceanic Izu-Bonin forearc, NW Pacific (IODP Expedition 352)

    Get PDF
    New biostratigraphical, geochemical, and magnetic evidence is synthesized with IODP Expedition 352 shipboard results to understand the sedimentary and tectono-magmatic development of the Izu–Bonin outer forearc region. The oceanic basement of the Izu–Bonin forearc was created by supra-subduction zone seafloor spreading during early Eocene (c. 50–51 Ma). Seafloor spreading created an irregular seafloor topography on which talus locally accumulated. Oxide-rich sediments accumulated above the igneous basement by mixing of hydrothermal and pelagic sediment. Basaltic volcanism was followed by a hiatus of up to 15 million years as a result of topographic isolation or sediment bypassing. Variably tuffaceous deep-sea sediments were deposited during Oligocene to early Miocene and from mid-Miocene to Pleistocene. The sediments ponded into extensional fault-controlled basins, whereas condensed sediments accumulated on a local basement high. Oligocene nannofossil ooze accumulated together with felsic tuff that was mainly derived from the nearby Izu–Bonin arc. Accumulation of radiolarian-bearing mud, silty clay, and hydrogenous metal oxides beneath the carbonate compensation depth (CCD) characterized the early Miocene, followed by middle Miocene–Pleistocene increased carbonate preservation, deepened CCD and tephra input from both the oceanic Izu–Bonin arc and the continental margin Honshu arc. The Izu–Bonin forearc basement formed in a near-equatorial setting, with late Mesozoic arc remnants to the west. Subduction-initiation magmatism is likely to have taken place near a pre-existing continent–oceanic crust boundary. The Izu–Bonin arc migrated northward and clockwise to collide with Honshu by early Miocene, strongly influencing regional sedimentation

    Palaeozoic-Recent geological development and uplift of the Amanos Mountains (S Turkey) in the critically located northwesternmost corner of the Arabian continent

    Get PDF
    <p>We have carried out a several-year-long study of the Amanos Mountains, on the basis of which we present new sedimentary and structural evidence, which we combine with existing data, to produce the first comprehensive synthesis in the regional geological setting. The ca. N-S-trending Amanos Mountains are located at the northwesternmost edge of the Arabian plate, near the intersection of the African and Eurasian plates. Mixed siliciclastic-carbonate sediments accumulated on the north-Gondwana margin during the Palaeozoic. Triassic rift-related sedimentation was followed by platform carbonate deposition during Jurassic-Cretaceous. Late Cretaceous was characterised by platform collapse and southward emplacement of melanges and a supra-subduction zone ophiolite. Latest Cretaceous transgressive shallow-water carbonates gave way to deeper-water deposits during Palaeocene-Eocene. Eocene southward compression, reflecting initial collision, resulted in open folding, reverse faulting and duplexing. Fluvial, lagoonal and shallow-marine carbonates accumulated during Late Oligocene(?)-Early Miocene, associated with basaltic magmatism. Intensifying collision during Mid-Miocene initiated a foreland basin that then infilled with deep-water siliciclastic gravity flows. Late Miocene-Early Pliocene compression created mountain-sized folds and thrusts, verging E in the north but SE in the south. The resulting surface uplift triggered deposition of huge alluvial outwash fans in the west. Smaller alluvial fans formed along both mountain flanks during the Pleistocene after major surface uplift ended. Pliocene-Pleistocene alluvium was tilted towards the mountain front in the west. Strike-slip/transtension along the East Anatolian Transform Fault and localised sub-horizontal Quaternary basaltic volcanism in the region reflect regional transtension during Late Pliocene-Pleistocene (<4 Ma).</p

    Enabling precision manufacturing of active pharmaceutical ingredients: workflow for seeded cooling continuous crystallisations

    Get PDF
    Continuous manufacturing is widely used for the production of commodity products. Currently, it is attracting increasing interest from the pharmaceutical industry and regulatory agencies as a means to provide a consistent supply of medicines. Crystallisation is a key operation in the isolation of the majority of pharmaceuticals and has been demonstrated in a continuous manner on a number of compounds using a range of processing technologies and scales. Whilst basic design principles for crystallisations and continuous processes are known, applying these in the context of rapid pharmaceutical process development with the associated constraints of speed to market and limited material availability is challenging. A systematic approach for continuous crystallisation process design is required to avoid the risk that decisions made on one aspect of the process conspire to make a later development step or steps, either for crystallisation or another unit operation, more difficult. In response to this industry challenge, an innovative system-wide approach to decision making has been developed to support rapid, systematic, and efficient continuous seeded cooling crystallisation process design. For continuous crystallisation, the goal is to develop and operate a robust, consistent process with tight control of particle attributes. Here, an innovative system-based workflow is presented that addresses this challenge. The aim, methodology, key decisions and output at each at stage are defined and a case study is presented demonstrating the successful application of the workflow for the rapid design of processes to produce kilo quantities of product with distinct, specified attributes suited to the pharmaceutical development environment. This work concludes with a vision for future applications of workflows in continuous manufacturing development to achieve rapid performance based design of pharmaceuticals

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Integrated continuous process design for crystallisation, spherical agglomeration, and filtration of lovastatin

    Get PDF
    Purpose This work seeks to improve the particle processability of needle-like lovastatin crystals and develop a small-footprint continuous MicroFactory for its production. Methods General conditions for optimal spherical agglomeration of lovastatin crystals and subsequent product isolation are developed, first as batch processes, and then transferred to continuous MicroFactory operation. Results Methyl isobutyl ketone is a suitable bridging liquid for the spherical agglomeration of lovastatin. Practical challenges including coupling unit operations and solvent systems; mismatched flow rates and inconsistent suspension solid loading were resolved. The successful continuous production of lovastatin spherical agglomerates (D50 = 336 µm) was achieved. Spherical agglomeration increased the density of the bulk lovastatin powder and improved product flowability from poor to good, whilst maintaining lovastatin tablet performance. Conclusion A continuous, integrated MicroFactory for the crystallisation, spherical agglomeration, and filtration of lovastatin is presented with improved product particle processability. Up to 16,800 doses of lovastatin (60 mg) can be produced per day using a footprint of 23 m2

    Digital process design to define and deliver pharmaceutical particle attributes

    Get PDF
    A digital-first approach to produce quality particles of an active pharmaceutical ingredient across crystallisation, washing and drying is presented, minimising material requirements and experimental burden during development. To demonstrate current predictive modelling capabilities, the production of two particle sizes (D90 = 42 and 120µm) via crystallisation was targeted to deliver a predicted, measurable difference in in vitro dissolution performance. A parameterised population balance model considering primary nucleation, secondary nucleation, and crystal growth was used to select the modes of production for the different particle size batches. Solubility prediction aided solvent selection steps which also considered manufacturability and safety selection criteria. A wet milling model was parameterised and used to successfully produce a 90g product batch with a particle size D90 of 49.3µm, which was then used as the seeds for cooling crystallisation. A rigorous approach to minimising physical phenomena observed experimentally was implemented, and successfully predicted the required conditions to produce material satisfying the particle size design objective of D90 of 120µm in a seeded cooling crystallisation using a 5-stage MSMPR cascade. Product material was isolated using the filtration and washing processes designed, producing 71.2g of agglomerated product with a primary particle D90 of 128µm. Based on experimental observations, the population balance model was reparametrised to increase accuracy by inclusion of an agglomeration terms for the continuous cooling crystallisation. The dissolution performance for the two crystallised products is also demonstrated, and after 45minutes 104.0mg of the D90 of 49.3µm material had dissolved, compared with 90.5mg of the agglomerated material with D90 of 128µm. Overall, 1513g of the model compound was used to develop and demonstrate two laboratory scale manufacturing processes with specific particle size targets. This work highlights the challenges associated with a digital-first approach and limitations in current first-principles models are discussed that include dealing ab initio with encrustation, fouling or factors that affect dissolution other than particle size

    Breeding Experience and the Heritability of Female Mate Choice in Collared Flycatchers

    Get PDF
    Heritability in mate preferences is assumed by models of sexual selection, and preference evolution may contribute to adaptation to changing environments. However, mate preference is difficult to measure in natural populations as detailed data on mate availability and mate sampling are usually missing. Often the only available information is the ornamentation of the actual mate. The single long-term quantitative genetic study of a wild population found low heritability in female mate ornamentation in Swedish collared flycatchers. One potentially important cause of low heritability in mate ornamentation at the population level is reduced mate preference expression among inexperienced individuals.Applying animal model analyses to 21 years of data from a Hungarian collared flycatcher population, we found that additive genetic variance was 50 percent and significant for ornament expression in males, but less than 5 percent and non-significant for mate ornamentation treated as a female trait. Female breeding experience predicted breeding date and clutch size, but mate ornamentation and its variance components were unrelated to experience. Although we detected significant area and year effects on mate ornamentation, more than 85 percent of variance in this trait remained unexplained. Moreover, the effects of area and year on mate ornamentation were also highly positively correlated between inexperienced and experienced females, thereby acting to remove difference between the two groups.The low heritability of mate ornamentation was apparently not explained by the presence of inexperienced individuals. Our results further indicate that the expression of mate ornamentation is dominated by temporal and spatial constraints and unmeasured background factors. Future studies should reduce unexplained variance or use alternative measures of mate preference. The heritability of mate preference in the wild remains a principal but unresolved question in evolutionary ecology
    corecore