22 research outputs found

    Sperm DNA methylation dynamics after chemotherapy: a longitudinal study of a patient with testicular germ cell tumor treatment

    No full text
    International audienceBACKGROUND: An important issue for young men affected by testicular germ cell tumor (TGCT) is how TGCT and its treatment will affect, transiently or permanently, their future reproductive health. Previous studies have reported that xenobiotics can induce changes on human sperm epigenome and have the potential to promote epigenetic alterations in the offspring. OBJECTIVES: Here, we report the first longitudinal DNA methylation profiling of frozen sperm from a TGCT patient before and up to 2 years after a bleomycin, etoposide, and cisplatin (BEP) chemotherapy. MATERIALS AND METHODS: A TGCT was diagnosed in a 30-year-old patient. A cryopreservation of spermatozoa was proposed before adjuvant BEP treatment. Semen samples were collected before and after chemotherapy at 6, 9, 12, and 24 months. The DNA methylation status was determined by RRBS to detect DNA differentially methylated regions (DMRs). RESULTS: The analysis revealed that among the 74 DMRs showing modified methylation status 6 months after therapy, 17 remained altered 24 months after treatment. We next associated DMRs with differentially methylated genes (DMGs), which were subsequently intersected with loci known to be important or expressed during early development. DISCUSSION AND CONCLUSION: The consequences of the cancer treatment on the sperm epigenome during the recovery periods are topical issues of increasing significance as epigenetic modifications to the paternal genome may have deleterious effects on the offspring. The altered methylated status of these DMGs important for early development might modify their expression pattern and thus affect their function during key stages of embryogenesis, potentially leading to developmental disorders or miscarriages

    Phenotypic landscape of granulocytes and monocytes by multiparametric flow cytometry: A prospective study of a 1-tube panel strategy for diagnosis and prognosis of patients with MDS

    No full text
    International audienceBackground: Multiparametric flow cytometry (MFC) was recently reported to be a helpful additional tool in the diagnosis of myelodysplastic syndromes (MDS). However, numerous aberrancies have been reported that makes their evaluation difficult as part of a routine diagnosis. Methods: Here, we validated a 1-tube panel for the evaluation of granulocytic and monocytic maturation by MFC and correlated our findings with diagnosis and prognosis of MDS. A total of 251 samples with MDS suspicion were prospectively analyzed and compared to an internal reference database leading to the calculation of the Diff score. Results: The associated specificity and sensitivity values of this scoring system were 92.1% and 60.4% in a first learning cohort and 96.7% and 65.2% in a second independent validation cohort. The combination of the Diff score with the concomitantly calculated Ogata score increased the sensitivity to 74.2% and 78.3% in the learning and validation cohorts, respectively. Finally, a normal Diff score in MDS patients was associated with a significant prolonged progression-free survival. Conclusions: Taken together, the present data indicate that our strategy is a sensitive and specific MFC tool for the diagnosis of MDS-related cytopenia(s) which could be also useful for predicting evolution of these diseases

    Azacitidine Plus Venetoclax for the Treatment of Relapsed and Newly Diagnosed Acute Myeloid Leukemia Patients

    No full text
    International audienceVenetoclax (VEN) belongs the BH3-mimetic class that selectively targets BCL-2, activating apoptosis. The combination of VEN and azacitidine (AZA) has changed the paradigm of treatment of newly diagnosed (ND) acute myeloid leukemia (AML) patients ineligible for intensive chemotherapy. There is scarce evidence for the use of VEN–AZA for relapsed or refractory (R/R) AML. We compared the outcome of 39 R/R AML and 38 ND AML patients treated between 01/20 and 12/21. The median age was 69 (22–86) and 73 (61–81) in the R/R and ND groups, respectively. Adverse cytogenetics were found in 36% of patients in the R/R group and 59% of patients in the ND group. Overall response rate was 37% in R/R AML, including 13% CR, 8% CRi, 3% PR and 13% MLFS, and 58% in the ND AML, including 32% CR, 13% CRi and 13% MLFS. Adverse cytogenetics was associated with treatment failure in the R/R group (Relative Risk = 0.13, p = 0.005). Median overall survival (OS) was 5.9 months in the R/R group and 9.4 months in the ND group. Median OS was 2.2 months in the adverse cytogenetics group versus 8.7 months in the intermediate cytogenetics group in the R/R group (p = 0.02). Median leukemia-free survival was not different between the two groups (9.4 months and 10.3 months), indicating that VEN–AZA can be an efficient salvage treatment for selected R/R AML patients. In conclusion, VEN–AZA is a promising treatment for ND AML and for selected R/R AML patients

    Development of digital PCR molecular tests for clinical practice: principles, practical implementation and recommendations.

    No full text
    International audienceDigital PCR (dPCR) is a 3rd generation technology that complements traditional end-point PCR and real-time PCR. It was developed to overcome certain limitations of conventional amplification techniques, in particular for the detection of small amounts of nucleic acids and/or rare variants. This technology is in a full swing because of its high sensitivity and major applications in various domains such as oncology, transplantation or non-invasive prenatal testing. Consequently, PCRd also has great interest in many areas of medical biology, particularly for clinical applications aiming at detecting and quantifying specific genetic or epigenetic alterations of nucleic acids, even with specimens containing very low concentration of the nucleic acids of interest (e.g. liquid biopsies). However, this technique requires a good training of users and compliance with certain precautions. A lack in such a knowledge can lead to many errors in the conduct of the experiment and the interpretation of the results. In this review, we present the context in which this technology has emerged by describing in particular its principle and the main factors that can influence the quality of the analysis. Then, we propose a number of practical recommendations for the implementation of a test based on dPCR in clinical laboratories with an eye on quality requirements

    The role of genetic factors in patients with hepatocellular carcinoma and iron overload - a prospective series of 234 patients

    No full text
    International audienceBACKGROUND & AIMS:Iron overload (IO) in HFE-related hereditary haemochromatosis is associated with increased risk of liver cancer. This study aimed to investigate the role of other genes involved in hereditary IO among patients with hepatocellular carcinoma (HCC).METHODS:Patients with HCC diagnosed in our institution were included in this prospective study. Those with ferritin levels ≄300 ÎŒg/L (males) or ≄200 ÎŒg/L (females) and/or transferrin saturation ≄50% (males) or ≄45% (females) had liver iron concentration (LIC) evaluated by MRI. HFE C282Y and H63D mutations were screened. Genetic analyses of genes involved in hereditary IO (HFE, HJV/HFE2, HAMP, TFR2, SLC40A1, GNPAT) were performed in patients with increased LIC.RESULTS:A total of 234 patients were included; 215 (92%) had common acquired risk factors of HCC (mainly alcoholism or chronic viral hepatitis). 119 patients had abnormal iron parameters. Twelve (5.1%) were C282Y homozygotes, three were compound C282Y/H63D heterozygotes. LIC was measured by MRI in 100 patients. Thirteen patients with a LIC>70 ÎŒmol/g were enrolled in further genetic analyses: two unrelated patients bore the HAMP:c.-153C>T mutation at the heterozygous state, which is associated with increased risk of IO and severe haemochromatosis. Specific haplotypes of SLC40A1 were also studied.CONCLUSIONS:Additional genetic risk factors of IO were found in 18 patients (7.7%) among a large series of 234 HCC patients. Screening for IO and the associated at-risk genotypes in patients who have developed HCC, is useful for both determining etiologic diagnosis and enabling family screening and possibly primary prevention in relatives

    Moncianionic {Mn(NO)}5 and dianionic {Mn(NO)}6 thiolatonitrosylmanganese complexes: [(NO)Mn(L)2]- and [(NO)Mn(L)2]2- (LH2=1,2-Benzenedithiol and Toluene-3,4-dithiol)

    No full text
    International audienceDigital PCR (dPCR) is a 3rd generation technology that complements traditional end-point PCR and real-time PCR. It was developed to overcome certain limitations of conventional amplification techniques, in particular for the detection of small amounts of nucleic acids and/or rare variants. This technology is in a full swing because of its high sensitivity and major applications in various domains such as oncology, transplantation or non-invasive prenatal testing. Consequently, PCRd also has great interest in many areas of medical biology, particularly for clinical applications aiming at detecting and quantifying specific genetic or epigenetic alterations of nucleic acids, even with specimens containing very low concentration of the nucleic acids of interest (e.g. liquid biopsies). However, this technique requires a good training of users and compliance with certain precautions. A lack in such a knowledge can lead to many errors in the conduct of the experiment and the interpretation of the results. In this review, we present the context in which this technology has emerged by describing in particular its principle and the main factors that can influence the quality of the analysis. Then, we propose a number of practical recommendations for the implementation of a test based on dPCR in clinical laboratories with an eye on quality requirements

    A variant erythroferrone disrupts iron homeostasis in SF3B1-mutated myelodysplastic syndrome

    Get PDF
    International audienceMyelodysplastic syndromes (MDS) with ring sideroblasts are hematopoietic stem cell disorders with erythroid dysplasia and mutations in the SF3B1 splicing factor gene. Patients with MDS with SF3B1 mutations often accumulate excessive tissue iron, even in the absence of transfusions, but the mechanisms that are responsible for their parenchymal iron overload are unknown. Body iron content, tissue distribution, and the supply of iron for eryth-ropoiesis are controlled by the hormone hepcidin, which is regulated by erythroblasts through secretion of the erythroid hormone erythroferrone (ERFE). Here, we identified an alternative ERFE transcript in patients with MDS with the SF3B1 mutation. Induction of this ERFE transcript in primary SF3B1-mutated bone marrow erythroblasts generated a variant protein that maintained the capacity to suppress hepcidin transcription. Plasma concentrations of ERFE were higher in patients with MDS with an SF3B1 gene mutation than in patients with SF3B1 wild-type MDS. Thus, hepcidin suppression by a variant ERFE is likely responsible for the increased iron loading in patients with SF3B1-mutated MDS, suggesting that ERFE could be targeted to prevent iron-mediated toxicity. The expression of the variant ERFE transcript that was restricted to SF3B1-mutated erythroblasts decreased in lenalidomide-responsive anemic patients, identifying variant ERFE as a specific biomarker of clonal erythropoiesis
    corecore