9 research outputs found

    Perfusate Metabolomics Content and Expression of Tubular Transporters During Human Kidney Graft Preservation by Hypothermic Machine Perfusion

    Get PDF
    Background. Ischemia-related injury during the preimplantation period impacts kidney graft outcome. Evaluating these lesions by a noninvasive approach before transplantation could help us to understand graft injury mechanisms and identify potential biomarkers predictive of graft outcomes. This study aims to determine the metabolomic content of graft perfusion fluids and its dependence on preservation time and to explore whether tubular transporters are possibly involved in metabolomics variations. Methods. Kidneys were stored on hypothermic perfusion machines. We evaluated the metabolomic profiles of perfusion fluids (n=35) using liquid chromatography coupled with tandem mass spectrometry and studied the transcriptional expression of tubular transporters on preimplantation biopsies (n=26), both collected at the end of graft perfusion. We used univariate and multivariate analyses to assess the impact of perfusion time on these parameters and their relationship with graft outcome. Results. Seventy-two metabolites were found in preservation fluids at the end of perfusion, of which 40% were already present in the native conservation solution. We observed an increase of 23 metabolites with a longer perfusion time and a decrease of 8. The predictive model for time-dependent variation of metabolomics content showed good performance (R2=76%, Q2=54%, accuracy=41%, and permutation test significant). Perfusion time did not affect the mRNA expression of transporters. We found no correlation between metabolomics and transporters expression. Neither the metabolomics content nor transporter expression was predictive of graft outcome. Conclusions. Our results call for further studies, focusing on both intra- and extratissue metabolome, to investigate whether transporter alterations can explain the variations observed in the preimplantation period

    Taking Advantages of Blood–Brain or Spinal Cord Barrier Alterations or Restoring Them to Optimize Therapy in ALS?

    No full text
    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that still lacks an efficient therapy. The barriers between the central nervous system (CNS) and the blood represent a major limiting factor to the development of drugs for CNS diseases, including ALS. Alterations of the blood–brain barrier (BBB) or blood–spinal cord barrier (BSCB) have been reported in this disease but still require further investigations. Interestingly, these alterations might be involved in the complex etiology and pathogenesis of ALS. Moreover, they can have potential consequences on the diffusion of candidate drugs across the brain. The development of techniques to bypass these barriers is continuously evolving and might open the door for personalized medical approaches. Therefore, identifying robust and non-invasive markers of BBB and BSCB alterations can help distinguish different subgroups of patients, such as those in whom barrier disruption can negatively affect the delivery of drugs to their CNS targets. The restoration of CNS barriers using innovative therapies could consequently present the advantage of both alleviating the disease progression and optimizing the safety and efficiency of ALS-specific therapies

    The effect of pH alterations on TDP-43 in a cellular model of amyotrophic lateral sclerosis

    No full text
    Amyotrophic Lateral Sclerosis (ALS) is the most common neurodegenerative disease affecting motor neurons. The pathophysiology of ALS is not well understood but TDP-43 proteinopathy (aggregation and mislocalization) is one of the major phenomena described. Several factors can influence TDP-43 behavior such as mild pH alterations that can induce conformational changes in recombinant TDP-43, increasing its propensity to aggregate. However to our knowledge, no studies have been conducted yet in a cellular setting, in the context of ALS. We therefore tested the effect of cellular pH alterations on the localization, aggregation, and phosphorylation of TDP-43. HEK293T cells overexpressing wildtype TDP-43 were incubated for 1 h with solutions of different pH (6.4, 7.2, and 8). Incubation of cells for 1 h in solutions of pH 6.4 and 8 led to an increase in TDP-43-positive puncta. This was accompanied by the mislocalization of TDP-43 from the nucleus to the cytoplasm. Our results suggest that small alterations in cellular pH affect TDP-43 and increase its mislocalization into cytoplasmic TDP-43-positive puncta, which might suggest a role of TDP-43 in the response of cells to pH alterations

    Taking Advantages of Blood–Brain or Spinal Cord Barrier Alterations or Restoring Them to Optimize Therapy in ALS?

    No full text
    International audienceAmyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that still lacks an efficient therapy. The barriers between the central nervous system (CNS) and the blood represent a major limiting factor to the development of drugs for CNS diseases, including ALS. Alterations of the blood–brain barrier (BBB) or blood–spinal cord barrier (BSCB) have been reported in this disease but still require further investigations. Interestingly, these alterations might be involved in the complex etiology and pathogenesis of ALS. Moreover, they can have potential consequences on the diffusion of candidate drugs across the brain. The development of techniques to bypass these barriers is continuously evolving and might open the door for personalized medical approaches. Therefore, identifying robust and non-invasive markers of BBB and BSCB alterations can help distinguish different subgroups of patients, such as those in whom barrier disruption can negatively affect the delivery of drugs to their CNS targets. The restoration of CNS barriers using innovative therapies could consequently present the advantage of both alleviating the disease progression and optimizing the safety and efficiency of ALS-specific therapies

    Some CSF Kynurenine Pathway Intermediates Associated with Disease Evolution in Amyotrophic Lateral Sclerosis

    No full text
    The aim of this study was to evaluate the kynurenine pathway (KP) and amino acids profile, using mass spectrometry, in the cerebrospinal fluid (CSF) of 42 amyotrophic lateral sclerosis (ALS) patients at the diagnosis and 40 controls to detect early disorders of these pathways. Diagnostic and predictive ability (based on weight loss, forced vital capacity, ALS Functional Rating Scale—Revised evolution over 12 months, and survival time) of these metabolites were evaluated using univariate followed by supervised multivariate analysis. The multivariate model between ALS and controls was not significant but highlighted some KP metabolites (kynurenine (KYN), kynurenic acid (KYNA), 3-Hydroxynurenine (3-HK)/KYNA ratio), and amino acids (Lysine, asparagine) as involved in the discrimination between groups (accuracy 62%). It revealed a probable KP impairment toward neurotoxicity in ALS patients and in bulbar forms. Regarding the prognostic effect of metabolites, 12 were commonly discriminant for at least 3 of 4 disease evolution criteria. This investigation was crucial as it did not show significant changes in CSF concentrations of amino acids and KP intermediates in early ALS evolution. However, trends of KP modifications suggest further exploration. The unclear kinetics of neuroinflammation linked to KP support the interest in exploring these pathways during disease evolution through a longitudinal strategy

    Quantitative impact of pre-analytical process on plasma uracil when testing for dihydropyrimidine dehydrogenase deficiency

    No full text
    International audienceAIMS: Determining dihydropyrimidine dehydrogenase (DPD) activity by measuring patient’s uracil (U) plasma concentration is mandatory before fluoropyrimidines (FP) administration in France. In this study, we aimed to refine the pre-analytical recommendations for determining U and dihydrouracil (UH(2) ) concentrations, since they are essential in reliable DPD deficiency testing. METHODS: U and UH(2) concentrations were collected from 14 hospital laboratories. Stability in whole blood and plasma after centrifugation, the type of anticoagulant and long-term plasma storage were evaluated. The variation induced by time and temperature was calculated and compared to an acceptability range of ± 20%. Inter-occasion variability (IOV) of U and UH(2) was assessed in 573 patients double sampled for DPD-deficiency testing. RESULTS: Storage of blood samples before centrifugation at room temperature (RT) should not exceed 1 h, whereas cold (+4°C) storage maintains U stable after 5 hours. For patients correctly double sampled, IOV of U reached 22.4% for U (SD = 17.9%, range = [0-99%]). Notably, 17% of them were assigned with a different phenotype (normal or DPD deficient) based on the analysis of their two samples. For those having at least one non-compliant sample, this percentage increased up to 33.8%. The moment of blood collection did not affect the DPD phenotyping result. CONCLUSION: Caution should be taken when interpreting U concentrations if the time before centrifugation exceeds 1 h at RT, since it rises significantly afterwards. Not respecting the pre-analytical conditions for DPD phenotyping increases the risk of DPD status misclassification

    Quantitative impact of pre-analytical process on plasma uracil when testing for dihydropyrimidine dehydrogenase deficiency.

    No full text
    AIMS: Determining dihydropyrimidine dehydrogenase (DPD) activity by measuring patient's uracil (U) plasma concentration is mandatory before fluoropyrimidine (FP) administration in France. In this study, we aimed to refine the pre-analytical recommendations for determining U and dihydrouracil (UH2 ) concentrations, as they are essential in reliable DPD-deficiency testing. METHODS: U and UH2 concentrations were collected from 14 hospital laboratories. Stability in whole blood and plasma after centrifugation, the type of anticoagulant and long-term plasma storage were evaluated. The variation induced by time and temperature was calculated and compared to an acceptability range of ±20%. Inter-occasion variability (IOV) of U and UH2 was assessed in 573 patients double sampled for DPD-deficiency testing. RESULTS: Storage of blood samples before centrifugation at room temperature (RT) should not exceed 1 h, whereas cold (+4°C) storage maintains the stability of uracil after 5 hours. For patients correctly double sampled, IOV of U reached 22.4% for U (SD = 17.9%, range = 0-99%). Notably, 17% of them were assigned with a different phenotype (normal or DPD-deficient) based on the analysis of their two samples. For those having at least one non-compliant sample, this percentage increased up to 33.8%. The moment of blood collection did not affect the DPD phenotyping result. CONCLUSION: Caution should be taken when interpreting U concentrations if the time before centrifugation exceeds 1 hour at RT, since it rises significantly afterwards. Not respecting the pre-analytical conditions for DPD phenotyping increases the risk of DPD status misclassification
    corecore