145 research outputs found

    Biosynthesis of vitamin B12: the multi-enzyme synthesis of precorrin-4 and factor IV

    Get PDF
    AbstractBackground: In order to study the biosynthesis of vitamin B12, it is necessary to produce various intermediates along the biosynthetic pathway by enzymic methods. Recently, information on the organisation of the biosynthetic pathway has permitted the selection of the set of enzymes needed to biosynthesise any specific identified intermediate. The aim of the present work was to use recombinant enzymes in reconstituted multi-enzyme systems to biosynthesise particular intermediates.Results: The products of the cobG and cobJ genes from Pseudomonas denitrificans were expressed heterologously in Escherichia coli to afford good levels of activity of the corresponding enzymes, CobG and CobJ. Aerobic incubation of precorrin-3A with the CobG enzyme alone yielded precorrin-3B. When CobJ and S-adenosyl-l-methionine were included in the incubation, the product was precorrin-4. Both precorrin-3B and precorrin-4 are known precursors of vitamin B12 and their availability has allowed new mechanistic studies of enzymic transformations.Conclusions: Our results show that the expression of the CobG and CobJ enzymes has been successful, thus facilitating the biosynthesis of two precursors of vitamin B12. This lays the foundation for the structure determination of CobG and CobJ as well as future enzymic experiments focusing on later steps of vitamin B12 biosynthesis

    Concise synthesis of rare pyrido[1,2-a]pyrimidin-2-ones and related nitrogen-rich bicyclic scaffolds with a ring-junction nitrogen.

    Get PDF
    Pyrido[1,2-a]pyrimidin-2-ones represent a pharmaceutically interesting class of heterocycles. The structurally related pyrido[1,2-a]pyrimidin-4-ones are associated with a broad range of useful biological properties. Furthermore, quinolizinone-type scaffolds of these sorts with a bridgehead nitrogen are expected to display interesting physico-chemical properties. However, pyrido[1,2-a]pyrimidin-2-ones are largely under-represented in current small molecule screening libraries and the physical and biological properties of the pyrido[1,2-a]pyrimidin-2-one scaffold have been poorly explored (indeed, the same can be said for unsaturated bicyclic compounds with a bridgehead nitrogen in general). Herein, we report the development of a new strategy for the concise synthesis of substituted pyrido[1,2-a]pyrimidin-2-ones from readily available starting materials. The synthetic route involved the acylation of the lithium amide bases of 2-aminopyridines with alkynoate esters to form alkynamides, which were then cyclised under thermal conditions. The use of lithium amide anions ensured excellent regioselectivity for the 2-oxo-isomer over the undesired 4-oxo-isomer, which offers a distinct advantage over some existing methods for the synthesis of pyrido[1,2-a]pyrimidin-2-ones. Notably, different aminoazines could also be employed in this approach, which enabled access to several very unusual bicyclic systems with higher nitrogen contents. This methodology thus represents an important contribution towards the synthesis of pyrido[1,2-a]pyrimidin-2-ones and other rare azabicycles with a ring-junction nitrogen. These heterocycles represent attractive structural templates for drug discovery.The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° [279337/DOS]. The authors also thank AstraZeneca, the European Union (EU), the Engineering and Physical Sciences Research Council (EPSRC), the Biotechnology and Biological Sciences Research Council (BBSRC), the Medical Research Council (MRC), and the Wellcome Trust for funding. Data accessibility: all data supporting this study are provided as Supplementary Information accompanying this paper.This is the final version of the article. It was first available from Royal Society of Chemistry via http://dx.doi.org/10.1039/c5ob01784

    Cycloaddition Strategies for the Synthesis of Diverse Heterocyclic Spirocycles for Fragment-Based Drug Discovery.

    Get PDF
    In recent years the pharmaceutical industry has benefited from the advances made in fragment-based drug discovery (FBDD) with more than 30 fragment-derived drugs currently marketed or progressing through clinical trials. The success of fragment-based drug discovery is entirely dependent upon the composition of the fragment screening libraries used. Heterocycles are prevalent within marketed drugs due to the role they play in providing binding interactions; consequently, heterocyclic fragments are important components of FBDD libraries. Current screening libraries are dominated by flat, sp2-rich compounds, primarily owing to their synthetic tractability, despite the superior physicochemical properties displayed by more three-dimensional scaffolds. Herein, we report step-efficient routes to a number of biologically relevant, fragment-like heterocyclic spirocycles. The use of both electron-deficient and electron-rich 2-atom donors was explored in complexity-generating [3+2]-cycloadditions to furnish products in 3 steps from commercially available starting materials. The resulting compounds were primed for further fragment elaboration through the inclusion of synthetic handles from the outset of the syntheses

    Characterization of human FcεRIα chain expression and gene copy number in humanized rat basophilic leukaemia (RBL) reporter cell lines

    Get PDF
    Several laboratories have created rat basophil leukemia (RBL) cell lines stably transfected with the human high affinity IgE receptor (FcεRI H). More recently, humanized RBL cell lines saw the introduction of reporter genes such as luciferase (RS-ATL8) and DsRed (RBL NFAT-DsRed). These reporters are more sensitive than their parental non-reporter human-ized RBL cell lines. However, no studies so far have addressed the levels of FcεRI H surface expression on humanized RBL cell lines. This is a critical parameter, as it determines the ability of these cells to be efficiently sensitized with human IgE, hence it should affect the sensitivity of the cell assay-a critical parameter for any diagnostic application. Our purpose was to assess and compare the levels of expression of the transfected FcεRI H chain in humanized RBL cell lines. We compared surface levels of FcεRIα H by flow cytometry, using a fluorescently labelled monoclonal antibody (CRA-1/AER-37) and determined receptor numbers using calibration microspheres. FcεRIα H copy numbers were assessed by qPCR, and the sequence verified. Transfection with FcεRIγ H cDNA was assessed for its ability to increase FcεRIα H expression in the NFAT-DsRed reporter. While both SX-38 and RS-ATL8 expressed about 500.000 receptors/cell, RBL 703-21 and NFAT-DsRed had approximately 10-to 30-fold lower FcεRIα H expression, respectively. This was neither related to FcεRI H gene copy numbers, nor to differences in steady state mRNA levels, as determined by qPCR and RT-qPCR, respectively. Instead, FcεRIα H surface expression appeared to correlate with the co-expression of FcεRIγ H. Stable transfection of NFAT-DsRed cells with pBJ1 neo-huFcεRI gamma, which constitutively expresses FcεRIγ H , increased FcεRIα H chain expression levels. Levels of FcεRIα H surface expression vary greatly between humanized RBL reporter cell lines. This difference will affect the sensitivity of the reporter system when used for diagnostic purposes

    The structure of the cysteine-rich domain of Plasmodium falciparum P113 identifies the location of the RH5 binding site

    Get PDF
    Plasmodium falciparum RH5 is a secreted parasite ligand that is essential for erythrocyte invasion through direct interaction with the host erythrocyte receptor basigin. RH5 forms a tripartite complex with two other secreted parasite proteins, CyRPA and RIPR, and is tethered to the surface of the parasite through membrane-anchored P113. Antibodies against RH5, CyRPA, and RIPR can inhibit parasite invasion, suggesting that vaccines containing these three components have the potential to prevent blood-stage malaria. To further explore the role of the P113-RH5 interaction, we selected monoclonal antibodies against P113 that were either inhibitory or noninhibitory for RH5 binding. Using a Fab fragment as a crystallization chaperone, we determined the crystal structure of the RH5 binding region of P113 and showed that it is composed of two domains with structural similarities to rhamnose-binding lectins. We identified the RH5 binding site on P113 by using a combination of hydrogen-deuterium exchange mass spectrometry and site-directed mutagenesis. We found that a monoclonal antibody to P113 that bound to this interface and inhibited the RH5-P113 interaction did not inhibit parasite blood-stage growth. These findings provide further structural information on the protein interactions of RH5 and will be helpful in guiding the development of blood-stage malaria vaccines that target RH5

    Functional comparison of blood-stage Plasmodium falciparum malaria vaccine candidate antigens

    Get PDF
    The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5

    A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys

    Get PDF
    SummaryAntigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans

    Development of an improved blood-stage malaria vaccine targeting the essential RH5-CyRPA-RIPR invasion complex

    Get PDF
    Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric “RCR-complex”. We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called “R78C”, combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial

    Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions.

    Get PDF
    The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen - a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing
    corecore