1,438 research outputs found

    Biochemical and molecular studies of the polyunsaturated fatty acid desaturation pathway in fish

    Get PDF
    Fish have an absolute dietary requirement for certain polyunsaturated fatty acids (PUFA) termed “essential fatty acids” (EFA) that include members of both the n-6 and n-3 series typified by linoleic acid, 18:2n-6, and α-linolenic acid, 18:3n-3. However, the biologically active forms of EFA are generally the C20 and C22 metabolites of 18:2n-6 and 18:3n-3, viz. 20:4n-6, 20:5n-3 and 22:6n-3. Some fish species can convert C18 PUFA to the C20 and C22 PUFA through a series of alternating desaturation and chain elongation reactions mediated by microsomal systems containing elongases and Δ6 and Δ5 fatty acid desaturases. In species that cannot perform these conversions, the C20 and C22 PUFA themselves are dietary EFA and their C18 homologues do not satisfy EFA requirements. The extent to which the foregoing statements apply quantitatively to a given fish species varies widely. Therefore, a vital area in lipid nutrition in fish is the provision of sufficient amounts of the correct EFA to satisfy the requirements for normal growth and development, requirements that can vary quantitatively during the life of the fish and are particularly important factors in larval marine fish. This paper reviews the work on defining and characterising the fatty acid desaturation and elongation pathway in fish. Biochemical studies have been advanced by the use of cell cultures which have elucidated key parts of the pathway. Thus, the presence of the so-called Sprecher shunt, where 22:6n-3 is produced from 20:5n-3 through two successive elongations and a Δ6 desaturase followed by peroxisomal chain shortening, was demonstrated in trout. Similarly, the block in the pathway in marine and/or piscivorous fish could be due to either a deficiency of C18-20 elongase or Δ5 desaturase and this varies between different marine species. Recent work has focussed on the molecular biology of the pathway with the cloning of fatty acid desaturases and elongases from a variety of fish species. Zebrafish have been used as a model species and a unique desaturase possessing both Δ6 and Δ5 activity along with an elongase with very high C18-20 activity have been cloned and characterised. Understanding this pathway is of increased importance due to the current dependence of salmonid and marine fish aquaculture on fish oil, the supply of which is becoming increasingly limited and unsustainable, necessitating the use in fish feeds of sustainable plant oils, rich in C18 PUFA, but devoid of C20 and C22 PUFA

    Zebrafish cDNA encoding multifunctional fatty acid elongase involved in production of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids

    Get PDF
    Enzymes that increase the chain length of fatty acids are essential for biosynthesis of highly unsaturated fatty acids. The gLELO gene encodes a protein involved in the elongation of polyunsaturated fatty acids in the fungus Mortierella alpina. A search of the Genbank database identified several EST sequences, including one obtained from zebrafish (Danio rerio), with high similarity to gLELO. The full-length transcript, ZfELO, encoding a polypeptide of 291 amino acid residues was isolated from zebrafish liver cDNA. The predicted amino acid sequence of the open reading frame (ORF) shared high similarity with the elongases of C. elegans and human. When expressed in Saccharomyces cerevisiae, the zebrafish ORF conferred the ability to lengthen the chain of a range of C18, C20 and C22 polyunsaturated fatty acids, indicating that biosynthesis of 22:6n-3 from 18:3n-3 via a 24-carbon intermediate is not only feasible, but that one elongase enzyme can perform all three elongation steps required. The zebrafish enzyme was also able to elongate monounsaturated and saturated fatty acids, and thus demonstrates a greater level of promiscuity in terms of substrate use than any elongase enzyme described previously

    Nutritional regulation of hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition in zebrafish (Danio rerio) and tilapia (Oreochromis niloticus)

    Get PDF
    The desaturation and elongation of [1-14C]18:3n-3 was investigated in hepatocytes of the tropical warm freshwater species, zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus). The hepatocyte fatty acid desaturation/elongation pathway was assayed before and after the fish were fed two experimental diets, a control diet containing fish oil (FO) and a diet containing vegetable oil (VO; a blend of olive, linseed and high oleic acid sunflower oils) for 10 weeks. The VO diet was formulated to provide 1% each of 18:2n-6 and 18:3n-3, and so satisfy the possible EFA requirements of zebrafish and tilapia. At the end of the dietary trial, the lipid and fatty acid composition was determined in whole zebrafish, and liver, white muscle and brain of tilapia. Both zebrafish and tilapia expressed a hepatocyte fatty acid desaturation/elongation pattern consistent with them being freshwater and planktonivorous fish. The data also showed that hepatic fatty acid desaturation/elongation was nutritionally regulated with the activities being higher in fish fed the VO diet compared to fish fed the FO diet. In zebrafish, the main effect of the VO diet was increased fatty acid Δ6 desaturase activity resulting in the production of significantly more 18:4n-3 compared to fish fed the FO diet. In tilapia, all activities in the pathway were greater in fish fed the VO diet resulting in increased amounts of all fatty acids in the pathway, but primarily eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). However, the fatty acid compositional data indicated that despite increased activity, desaturation of 18:3n-3 was insufficient to maintain tissue proportions of EPA and DHA in fish fed the VO diet at the same level as in fish fed the FO diet. Practically, these results indicate that manipulation of tilapia diets in commercial culture in response to the declining global fish oil market would have important consequences for fish fatty acid composition and the health of consumers. Scientifically, zebrafish and tilapia, both the subject of active genome mapping projects, could be useful models for studies of lipid and fatty acid metabolism at a molecular biological and genetic level

    Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the production of eicosapentaenoic and docosahexanoic acids from alpha-linolenic acid in Atlantic salmon (Salmo salar)

    Get PDF
    Fish are the only major dietary source for humans of omega-3 highly unsaturated fatty acids (HUFA) and, with declining fisheries, farmed fish such as Atlantic salmon (Salmo salar) constitute an increasing proportion of the fish in the human diet. However, the current high use of fish oils, derived from wild capture marine fisheries, in aquaculture feeds is not sustainable in the longer term, and will constrain continuing growth of aquaculture activities. A greater understanding of how fish metabolise and biosynthesise HUFA may lead to effective use of more sustainable aquaculture diets. The study described here contributes to an effort to determine the molecular genetics of the HUFA biosynthetic pathway in salmon, with the overall aim being to determine mechanisms for optimising the use of vegetable oils in Atlantic salmon culture. In this paper we describe the cloning and functional characterisation of two genes from salmon involved in the biosynthesis of HUFA. A salmon desaturase cDNA, SalDes, was isolated that included an open reading frame (ORF) of 1362 bp specifying a protein of 454 amino acids. The protein sequence included all the characteristic features of microsomal fatty acid desaturases, including three histidine boxes, two transmembrane regions, and an N-terminal cytochrome b5 domain containing a haem-binding motif similar to that of other fatty acid desaturases. Functional expression in the yeast, Saccharomyces cerevisiae, showed SalDes is predominantly an omega-3 Δ5 desaturase, a key enzyme in the synthesis of eicosapentaenoic acid (20:5n-3) from α-linolenic acid (18:3n-3). The desaturase showed only low levels of Δ6 activity towards C18 polyunsaturated fatty acids. In addition, a fatty acid elongase cDNA, SalElo, was isolated that includes an ORF of 888 bp, specifying a protein of 295 amino acids. The protein sequence of SalElo includes characteristic features of microsomal fatty acid elongases, including a histidine box and a transmembrane region. Upon expression in yeast, SalElo showed broad substrate specificity for polyunsaturated fatty acids with a range of chain lengths, with the rank order being C18 > C20 > C22. Thus, all fatty acid elongase activities required for the biosynthesis of docosahexaenoic acid (22:6n-3) from 18:3n-3 are displayed by this one polypeptide product

    Two-Stage Deep Learning Framework for Quality Assessment of Left Atrial Late Gadolinium Enhanced MRI Images

    Full text link
    Accurate assessment of left atrial fibrosis in patients with atrial fibrillation relies on high-quality 3D late gadolinium enhancement (LGE) MRI images. However, obtaining such images is challenging due to patient motion, changing breathing patterns, or sub-optimal choice of pulse sequence parameters. Automated assessment of LGE-MRI image diagnostic quality is clinically significant as it would enhance diagnostic accuracy, improve efficiency, ensure standardization, and contributes to better patient outcomes by providing reliable and high-quality LGE-MRI scans for fibrosis quantification and treatment planning. To address this, we propose a two-stage deep-learning approach for automated LGE-MRI image diagnostic quality assessment. The method includes a left atrium detector to focus on relevant regions and a deep network to evaluate diagnostic quality. We explore two training strategies, multi-task learning, and pretraining using contrastive learning, to overcome limited annotated data in medical imaging. Contrastive Learning result shows about 4%4\%, and 9%9\% improvement in F1-Score and Specificity compared to Multi-Task learning when there's limited data.Comment: Accepted to STACOM 2023. 11 pages, 3 figure

    A Simulation Model of Periarterial Clearance of Amyloid-β from the Brain

    Get PDF
    The accumulation of soluble and insoluble amyloid-β (Aβ) in the brain indicates failure of elimination of Aβ from the brain with age and Alzheimer's disease (AD). There is a variety of mechanisms for elimination of Aβ from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of Aβ into the blood and periarterial lymphatic drainage of Aβ. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as Aβ, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of Aβ in the walls of human arteries with age and AD as cerebral amyloid angiopathy (CAA). Initially, Aβ diffuses through the extracellular spaces of gray matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterized, the exact mechanism whereby perivascular elimination of Aβ occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy

    Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective.

    Get PDF
    The traditional method of assessing bone mineral density (BMD; given by bone mineral content [BMC] divided by projected bone area [Ap], BMD = BMC/Ap) has come under strong criticism by various authors. Their criticism being that the projected bone "area" (Ap) will systematically underestimate the skeletal bone "volume" of taller subjects. To reduce the confounding effects of bone size, an alternative ratio has been proposed called bone mineral apparent density [BMAD = BMC/(Ap)3/2]. However, bone size is not the only confounding variable associated with BMC. Others include age, sex, body size, and maturation. To assess the dimensional relationship between BMC and projected bone area, independent of other confounding variables, we proposed and fitted a proportional allometric model to the BMC data of the L2-L4 vertebrae from a previously published study. The projected bone area exponents were greater than unity for both boys (1.43) and girls (1.02), but only the boy's fitted exponent was not different from that predicted by geometric similarity (1.5). Based on these exponents, it is not clear whether bone mass acquisition increases in proportion to the projected bone area (Ap) or an estimate of projected bone volume (Ap)3/2. However, by adopting the proposed methods, the analysis will automatically adjust BMC for differences in projected bone size and other confounding variables for the particular population being studied. Hence, the necessity to speculate as to the theoretical value of the exponent of Ap, although interesting, becomes redundant

    The Swift X-ray flaring afterglow of GRB 050607

    Get PDF
    The unique capability of the Swift satellite to perform a prompt and autonomous slew to a newly detected Gamma-Ray Burst (GRB) has yielded the discovery of interesting new properties of GRB X-ray afterglows, such as the steep early lightcurve decay and the frequent presence of flares detected up to a few hours after the GRB trigger. We present observations of GRB 050607, the fourth case of a GRB discovered by Swift with flares superimposed on the overall fading X-ray afterglow. The flares of GRB 050607 were not symmetric as in previously reported cases, showing a very steep rise and a shallower decay, similar to the Fast Rise, Exponential Decay that are frequently observed in the gamma-ray prompt emission. The brighter flare had a flux increase by a factor of approximately 25,peaking for 30 seconds at a count rate of approximately 30 counts s-1, and it presented hints of addition short time scale activity during the decay phase. There is evidence of spectral evolution during the flares. In particular, at the onset of the flares the observed emission was harder, with a gradual softening as each flare decayed. The very short time scale and the spectral variability during the flaring activity are indicators of possible extended periods of energy emission by the GRB central engine. The flares were followed by a phase of shallow decay, during which the forward shock was being refreshed by a long-lived central engine or by shells of lower Lorentz factors, and by a steepening after approximately 12 ks to a decay slope considered typical of X-ray afterglows.Comment: 23 pages, 5 figures, Accepted by the Astrophysical Journa
    corecore