648 research outputs found

    National history through local: Social evils and the origin of municipal services in Cincinnati

    Get PDF
    National history through local: Social evils and the origin of municipal services in Cincinnat

    Physicians Open a Can of Worms: American Nationality and Hookworm in the United States, 1893-1909

    Get PDF
    Physicians Open a Can of Worms: American Nationality and Hookworm in the United States, 1893-190

    Introduction American Studies and American Science: An Analysis

    Get PDF
    Introduction American Studies and American Science: An Analysi

    The HIPASS Catalogue - II. Completeness, Reliability, and Parameter Accuracy

    Full text link
    The HI Parkes All Sky Survey (HIPASS) is a blind extragalactic HI 21-cm emission line survey covering the whole southern sky from declination -90 to +25. The HIPASS catalogue (HICAT), containing 4315 HI-selected galaxies from the region south of declination +2, is presented in Meyer et al. (2004a, Paper I). This paper describes in detail the completeness and reliability of HICAT, which are calculated from the recovery rate of synthetic sources and follow-up observations, respectively. HICAT is found to be 99 per cent complete at a peak flux of 84 mJy and an integrated flux of 9.4 Jy km/s. The overall reliability is 95 per cent, but rises to 99 per cent for sources with peak fluxes >58 mJy or integrated flux > 8.2 Jy km/s. Expressions are derived for the uncertainties on the most important HICAT parameters: peak flux, integrated flux, velocity width, and recessional velocity. The errors on HICAT parameters are dominated by the noise in the HIPASS data, rather than by the parametrization procedure.Comment: Accepted for publication in MNRAS. 12 pages, 11 figures. Paper with higher resolution figures can be downloaded from http://hipass.aus-vo.or

    Favorable outcome of early treatment of new onset child and adolescent migraine-implications for disease modification.

    Get PDF
    There is evidence that the prevalence of migraine in children and adolescents may be increasing. Current theories of migraine pathophysiology in adults suggest activation of central cortical and brainstem pathways in conjunction with the peripheral trigeminovascular system, which ultimately results in release of neuropeptides, facilitation of central pain pathways, neurogenic inflammation surrounding peripheral vessels, and vasodilatation. Although several risk factors for frequent episodic, chronic, and refractory migraine have been identified, the causes of migraine progression are not known. Migraine pathophysiology has not been fully evaluated in children. In this review, we will first discuss the evidence that early therapeutic interventions in the child or adolescent new onset migraineur, may halt or limit progression and disability. We will then review the evidence suggesting that many adults with chronic or refractory migraine developed their migraine as children or adolescents and may not have been treated adequately with migraine-specific therapy. Finally, we will show that early, appropriate and optimal treatment of migraine during childhood and adolescence may result in disease modification and prevent progression of this disease

    A Magnetohydrodynamic enhanced entry system for space transportation: MEESST

    Get PDF
    This paper outlines the initial development of a novel magnetohydrodynamic (MHD) plasma control system which aims at mitigating shock-induced heating and the radio-frequency communication blackout typically encountered during (re-)entry into planetary atmospheres. An international consortium comprising universities, SMEs, research institutions, and industry has been formed in order to develop this technology within the MEESST project. The latter is funded by the Future and Emerging Technologies (FET) program of the European Commission’s Horizon 2020 scheme (grant no. 899298). Atmospheric entry imposes one of the harshest environments which a spacecraft can experience. The combination of hypersonic velocities and the rapid compression of atmospheric particles by the spacecraft leads to high-enthalpy, partially ionised gases forming around the vehicle. This inhibits radio communications and induces high thermal loads on the spacecraft surface. For the former problem, spacecraft can sometimes rely on satellite constellations for communicating through the plasma wake and therefore preventing the blackout. On the other hand, expensive, heavy, and non-reusable thermal protection systems (TPS) are needed to dissipate the severe thermal loads. Such TPS can represent up to 30% of an entry vehicles weight, and especially for manned missions they can reduce the cost- efficiency by sacrificing payload mass. Such systems are also prone to failure, putting the lives of astronauts at risk. The use of electromagnetic fields to exploit MHD principles has long been considered as an attractive solution for tackling the problems described above. By pushing the boundary layer of the ionized gas layer away from the spacecraft, the thermal loads can be reduced, while also opening a magnetic window for radio communications and mitigating the blackout phenomenon. The application of this MHD-enabled system has previously not been demonstrated in realistic conditions due to the required large magnetic fields (on the order of Tesla or more), which for conventional technologies would demand exceptionally heavy and power-hungry electromagnets. High-temperature superconductors (HTS) have reached a level of industrial maturity sufficient for them to act as a key enabling technology for this application. Thanks to superior current densities, HTS coils can offer the necessary low weight and compactness required for space applications, with the ability to generate the strong magnetic fields needed for entry purposes. This paper provides an overview of the MEESST project, including its goals, methodology and some preliminary design considerations
    • 

    corecore