270 research outputs found
C9orf72 hexanucleotide repeat length in older population: normal variation and effects on cognition
The hexanucleotide repeat expansion in C9orf72 is a common cause of amyotrophic lateral sclerosis/frontotemporal dementia and also rarely found in other psychiatric and neurodegenerative conditions. Alleles with >30 repeats are often considered an expansion, but the pathogenic repeat length threshold is still unclear. It is also unclear whether intermediate repeat length alleles (often defined either as 7-30 or 20-30 repeats) have clinically significant effects. We determined the C9orf72 repeat length distribution in 3142 older Finns (aged 60-104 years). The longest nonexpanded allele was 45 repeats. We found 7-45 repeats in 1036/3142 (33%) individuals, 20-45 repeats in 56/3142 (1.8%), 30-45 repeats in 12/3142 (0.38%), and expansion (>45 repeats) in 6/3142 (0.19%). There was no apparent clustering of neurodegenerative or psychiatric diseases in individuals with 30-45 repeats indicating that 30-45 repeats are not pathogenic. None of the 6 expansion carriers had a diagnosis of amyotrophic lateral sclerosis/frontotemporal dementia but 4 had a diagnosis of a neurodegenerative or psychiatric disease. Intermediate length alleles (categorized as 7-45 and 20-45 repeats) did not associate with Alzheimer's disease or cognitive impairment. (C) 2019 The Author(s). Published by Elsevier Inc.Peer reviewe
What works for wellbeing in culture and sport? Report of a DELPHI process to support coproduction and establish principles and parameters of an evidence review
Aims: There is a growing recognition of the ways in which culture and sport can contribute to wellbeing. A strong evidence base is needed to support innovative service development and a 3-year research programme is being undertaken to capture best evidence of wellbeing impacts and outcomes of cultural and sporting activities in order to inform UK policy and practice. This article provides an overview of methods and findings from an initial coproduction process with key stakeholders that sought to explore and agree principles and parameters of the evidence review for culture, sport and wellbeing (CSW).
Methods: A two-stage DELPHI process was conducted with a purposeful sample of 57 stakeholders between August and December 2015. Participants were drawn from a range of culture and sport organisations and included commissioners and managers, policy makers, representatives of service delivery organisations (SDOs) and scholars. The DELPHI 1 questionnaire was developed from extensive consultation in July and August 2015. It explored definitions of wellbeing, the role of evidence, quality assessment, and the culture and sport populations, settings and interventions that are most likely to deliver wellbeing outcomes. Following further consultation, the results, presented as a series of ranked statements, were sent back to participants (DELPHI 2), which allowed them to reflect on and, if they wished, express agreement or disagreement with the emerging consensus. Results: A total of 40 stakeholders (70.02%) responded to the DELPHI questionnaires.
DELPHI 1 mapped areas of agreement and disagreement, confirmed in DELPHI 2. The exercise drew together the key priorities for the CSW evidence review.
Conclusion: The DELPHI process, in combination with face-to-face deliberation, enabled stakeholders to engage in complex discussion and express nuanced priorities while also allowing the group to come to an overall consensus and agree outcomes. The results will inform the CSW evidence review programme until its completion in March 2018
C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by partial depletion of Pten.
Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease, characterised by progressive failure of the neuromuscular system. A (G4C2)n repeat expansion in C9ORF72 is the most common genetic cause of ALS and frontotemporal dementia (FTD). To date, the balance of evidence indicates that the (G4C2)n repeat causes toxicity and neurodegeneration via a gain-of-toxic function mechanism; either through direct RNA toxicity or through the production of toxic aggregating dipeptide repeat proteins. Here, we have generated a stable and isogenic motor neuronal NSC34 cell model with inducible expression of a (G4C2)102 repeat, to investigate the gain-of-toxic function mechanisms. The expression of the (G4C2)102 repeat produces RNA foci and also undergoes RAN translation. In addition, the expression of the (G4C2)102 repeat shows cellular toxicity. Through comparison of transcriptomic data from the cellular model with laser-captured spinal motor neurons from C9ORF72-ALS cases, we also demonstrate that the PI3K/Akt cell survival signalling pathway is dysregulated in both systems. Furthermore, partial knockdown of Pten rescues the toxicity observed in the NSC34 (G4C2)102 cellular gain-of-toxic function model of C9ORF72-ALS. Our data indicate that PTEN may provide a potential therapeutic target to ameliorate toxic effects of the (G4C2)n repeat
C9orf72 poly GA RAN-translated protein plays a key role in amyotrophic lateral sclerosis via aggregation and toxicity
An intronic GGGGCC (G4C2) hexanucleotide repeat expansion inC9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of G4C2 RNA can result in five different dipeptide repeat proteins (DPR: poly GA, poly GP, poly GR, poly PA, and poly PR), which aggregate into neuronal cytoplasmic and nuclear inclusions in affected patients, however their contribution to disease pathogenesis remains controversial. We show that among the DPR proteins, expression of poly GA in a cell culture model activates programmed cell death and TDP-43 cleavage in a dose-dependent manner. Dual expression of poly GA together with other DPRs revealed that poly GP and poly PA are sequestered by poly GA, whereas poly GR and poly PR are rarely co-localised with poly GA. Dual expression of poly GA and poly PA ameliorated poly GA toxicity by inhibiting poly GA aggregation both in vitro and in vivo in the chick embryonic spinal cord. Expression of alternative codon-derived DPRs in chick embryonic spinal cord confirmed in vitro data, revealing that each of the dipeptides caused toxicity, with poly GA being the most toxic. Further, in vivo expression of G4C2 repeats of varying length caused apoptotic cell death, but failed to generate DPRs. Together, these data demonstrate that C9-related toxicity can be mediated by either RNA or DPRs. Moreover, our findings provide evidence that poly GA is a key mediator of cytotoxicity and that cross-talk between DPR proteins likely modifies their pathogenic status in C9ALS/FTD
A genome-wide association study of myasthenia gravis
IMPORTANCE: Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood. OBJECTIVE: To identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study. DESIGN, SETTING, AND PARTICIPANTS: DNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody–positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication. MAIN OUTCOMES AND MEASURES: We calculated P values for association between 8114394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0 × 10(−8) was set for genome-wide significance after Bonferroni correction for multiple testing. RESULTS: In the over all case-control cohort, we identified association signals at CTLA4 (rs231770; P = 3.98 × 10(−8); odds ratio, 1.37; 95% CI, 1.25–1.49), HLA-DQA1 (rs9271871; P = 1.08 × 10(−8); odds ratio, 2.31; 95% CI, 2.02 – 2.60), and TNFRSF11A (rs4263037; P = 1.60 × 10(−9); odds ratio, 1.41; 95% CI, 1.29–1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P = 1.32 × 10(−12); odds ratio, 1.56; 95% CI, 1.44–1.68) and the other was detected in the major histocompatibility complex on chromosome 6p21 (HLA-DQA1; rs9271871; P = 7.02 × 10(−18); odds ratio, 4.27; 95% CI, 3.92–4.62). Association within the major histocompatibility complex region was also observed in early-onset cases (HLA-DQA1; rs601006; P = 2.52 × 10(−11); odds ratio, 4.0; 95% CI, 3.57–4.43), although the set of single-nucleotide polymorphisms was different from that implicated among late-onset cases. CONCLUSIONS AND RELEVANCE: Our genetic data provide insights into aberrant cellular mechanisms responsible for this prototypical autoimmune disorder. They also suggest that clinical trials of immunomodulatory drugs related to CTLA4 and that are already Food and Drug Administration approved as therapies for other autoimmune diseases could be considered for patients with refractory disease
Genetic, transcriptomic, histological, and biochemical analysis of progressive supranuclear palsy implicates glial activation and novel risk genes
Progressive supranuclear palsy (PSP), a rare Parkinsonian disorder, is characterized by problems with movement, balance, and cognition. PSP differs from Alzheimer’s disease (AD) and other diseases, displaying abnormal microtubule-associated protein tau by both neuronal and glial cell pathologies. Genetic contributors may mediate these differences; however, the genetics of PSP remain underexplored. Here we conduct the largest genome-wide association study (GWAS) of PSP which includes 2779 cases (2595 neuropathologically-confirmed) and 5584 controls and identify six independent PSP susceptibility loci with genome-wide significant (P < 5 × 10−8) associations, including five known (MAPT, MOBP, STX6, RUNX2, SLCO1A2) and one novel locus (C4A). Integration with cell type-specific epigenomic annotations reveal an oligodendrocytic signature that might distinguish PSP from AD and Parkinson’s disease in subsequent studies. Candidate PSP risk gene prioritization using expression quantitative trait loci (eQTLs) identifies oligodendrocyte-specific effects on gene expression in half of the genome-wide significant loci, and an association with C4A expression in brain tissue, which may be driven by increased C4A copy number. Finally, histological studies demonstrate tau aggregates in oligodendrocytes that colocalize with C4 (complement) deposition. Integrating GWAS with functional studies, epigenomic and eQTL analyses, we identify potential causal roles for variation in MOBP, STX6, RUNX2, SLCO1A2, and C4A in PSP pathogenesis.</p
A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease
A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function
Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis
Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p
A Genome-Wide Association Study of Myasthenia Gravis
Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood
Search for new phenomena using single photon events in the DELPHI detector at LEP
Data are presented on the reaction \epem~\into~\gamma + no other detected particle at center-of-mass energies, \sqs = 89.48 GeV, 91.26 GeV and 93.08 GeV. The cross section for this reaction is related directly to the number of light neutrino generations which couple to the \zz boson, and to several other phenomena such as excited neutrinos, the production of an invisible `X' particle, a possible magnetic moment of the tau neutrino, and neutral monojets. Based on the observed number of single photon events, the number of light neutrinos which couple to the \zz is measured to be N_\nu = 3.15 \pm 0.34. No evidence is found for anomalous production of energetic single photons, and upper limits at the 95\% confidence level are determined for excited neutrino production (BR < 4-9 \times 10^{-6}), production of an invisible `X' particle (\sigma < 0.1 pb), and the magnetic moment of the tau neutrino (< 5.2 \times 10^{-6} \mu_B). No event with the topology of a neutral monojet is found, and this corresponds to the limit \sigma < 0.044/\epsilon pb at the 95\% confidence level, where \epsilon is the unknown overall monojet detection efficiency
- …