121 research outputs found
Flow-mediated-paradoxical vasoconstriction is independently associated with asymptomatic myocardial ischemia and coronary artery disease in type 2 diabetic patients.
International audienceBACKGROUND: To investigate whether flow-mediated dilation (FMD) impairment, which precedes overt atherosclerosis, is associated with silent myocardial ischemia (SMI) and asymptomatic coronary artery disease (CAD) in type 2 diabetes. METHODS: Forearm FMD was measured by ultrasonography in 25 healthy control, 30 non-diabetic overweight or obese patients and 118 asymptomatic type 2 diabetic patients with a high cardiovascular risk profile. SMI (abnormal stress myocardial scintiscan and/or stress dobutamine echocardiogram) and CAD (coronary angiography in the patients with SMI) were assessed in the diabetic cohort. RESULTS: FMD was lower in diabetic patients (median 0.61% (upper limits of first and third quartiles -1.22;3.2)) than in healthy controls (3.95% (1.43;5.25), p < 0.01) and overweight/obese patients (4.25% (1.74;5.56), p < 0.01). SMI was present in 60 diabetic patients, including 21 subjects with CAD. FMD was lower in patients with SMI than in those without (0.12% (-2.3;1.58) vs 1.64% (0;3.69), p < 0.01), with a higher prevalence of paradoxical vasoconstriction (50.0% vs 29.3%, p < 0.05). FMD was also lower in patients with than without CAD (-1.22% (-2.5;1) vs 1.13% (-0.4;3.28), p < 0.01; paradoxical vasoconstriction 61.9% vs 34.4%, p < 0.05). Logistic regression analyses considering the parameters predicting SMI or CAD in univariate analyses with a p value <0.10 showed that paradoxical vasoconstriction (odds ratio 2.7 [95% confidence interval 1.2-5.9], p < 0.05) and nephropathy (OR 2.6 [1.2-5.7], p < 0.05) were independently associated with SMI; and only paradoxical vasoconstriction (OR 3.1 [1.2-8.2], p < 0.05) with CAD. The negative predictive value of paradoxical vasoconstriction to detect CAD was 88.7%. CONCLUSIONS: In diabetic patients, FMD was independently associated with SMI and asymptomatic CAD.Trial registration: Trial registration number NCT00685984
Molecular and Structural Discrimination of Proline Racemase and Hydroxyproline-2-Epimerase from Nosocomial and Bacterial Pathogens
The first eukaryotic proline racemase (PRAC), isolated from the human Trypanosoma cruzi pathogen, is a validated therapeutic target against Chagas' disease. This essential enzyme is implicated in parasite life cycle and infectivity and its ability to trigger host B-cell nonspecific hypergammaglobulinemia contributes to parasite evasion and persistence. Using previously identified PRAC signatures and data mining we present the identification and characterization of a novel PRAC and five hydroxyproline epimerases (HyPRE) from pathogenic bacteria. Single-mutation of key HyPRE catalytic cysteine abrogates enzymatic activity supporting the presence of two reaction centers per homodimer. Furthermore, evidences are provided that Brucella abortus PrpA [for ‘proline racemase’ virulence factor A] and homologous proteins from two Brucella spp are bona fide HyPREs and not ‘one way’ directional PRACs as described elsewhere. Although the mechanisms of aminoacid racemization and epimerization are conserved between PRAC and HyPRE, our studies demonstrate that substrate accessibility and specificity partly rely on contraints imposed by aromatic or aliphatic residues distinctively belonging to the catalytic pockets. Analysis of PRAC and HyPRE sequences along with reaction center structural data disclose additional valuable elements for in silico discrimination of the enzymes. Furthermore, similarly to PRAC, the lymphocyte mitogenicity displayed by HyPREs is discussed in the context of bacterial metabolism and pathogenesis. Considering tissue specificity and tropism of infectious pathogens, it would not be surprising if upon infection PRAC and HyPRE play important roles in the regulation of the intracellular and extracellular amino acid pool profiting the microrganism with precursors and enzymatic pathways of the host
Genetic Engineering of Trypanosoma (Dutonella) vivax and In Vitro Differentiation under Axenic Conditions
Trypanosoma vivax is one of the most common parasites responsible for animal trypanosomosis, and although this disease is widespread in Africa and Latin America, very few studies have been conducted on the parasite's biology. This is in part due to the fact that no reproducible experimental methods had been developed to maintain the different evolutive forms of this trypanosome under laboratory conditions. Appropriate protocols were developed in the 1990s for the axenic maintenance of three major animal Trypanosoma species: T. b. brucei, T. congolense and T. vivax. These pioneer studies rapidly led to the successful genetic manipulation of T. b. brucei and T. congolense. Advances were made in the understanding of these parasites' biology and virulence, and new drug targets were identified. By contrast, challenging in vitro conditions have been developed for T. vivax in the past, and this per se has contributed to defer both its genetic manipulation and subsequent gene function studies. Here we report on the optimization of non-infective T. vivax epimastigote axenic cultures and on the process of parasite in vitro differentiation into metacyclic infective forms. We have also constructed the first T. vivax specific expression vector that drives constitutive expression of the luciferase reporter gene. This vector was then used to establish and optimize epimastigote transfection. We then developed highly reproducible conditions that can be used to obtain and select stably transfected mutants that continue metacyclogenesis and are infectious in immunocompetent rodents
Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. II. Immunobiological Dysfunctions
Trypanosoma vivax is the main species involved in trypanosomosis, but very little is known about the immunobiology of the infective process caused by this parasite. Recently we undertook to further characterize the main parasitological, haematological and pathological characteristics of mouse models of T. vivax infection and noted severe anemia and thrombocytopenia coincident with rising parasitemia. To gain more insight into the organism's immunobiology, we studied lymphocyte populations in central (bone marrow) and peripherical (spleen and blood) tissues following mouse infection with T. vivax and showed that the immune system apparatus is affected both quantitatively and qualitatively. More precisely, after an initial increase that primarily involves CD4+ T cells and macrophages, the number of splenic B cells decreases in a step-wise manner. Our results show that while infection triggers the activation and proliferation of Hematopoietic Stem Cells, Granulocyte-Monocyte, Common Myeloid and Megacaryocyte Erythrocyte progenitors decrease in number in the course of the infection. An in-depth analysis of B-cell progenitors also indicated that maturation of pro-B into pre-B precursors seems to be compromised. This interferes with the mature B cell dynamics and renewal in the periphery. Altogether, our results show that T. vivax induces profound immunological alterations in myeloid and lymphoid progenitors which may prevent adequate control of T. vivax trypanosomosis
Trypanosoma vivax Infections: Pushing Ahead with Mouse Models for the Study of Nagana. I. Parasitological, Hematological and Pathological Parameters
African trypanosomiasis is a severe parasitic disease that affects both humans and livestock. Several different species may cause animal trypanosomosis and although Trypanosoma vivax (sub-genus Duttonella) is currently responsible for the vast majority of debilitating cases causing great economic hardship in West Africa and South America, little is known about its biology and interaction with its hosts. Relatively speaking, T. vivax has been more than neglected despite an urgent need to develop efficient control strategies. Some pioneering rodent models were developed to circumvent the difficulties of working with livestock, but disappointedly were for the most part discontinued decades ago. To gain more insight into the biology of T. vivax, its interactions with the host and consequently its pathogenesis, we have developed a number of reproducible murine models using a parasite isolate that is infectious for rodents. Firstly, we analyzed the parasitical characteristics of the infection using inbred and outbred mouse strains to compare the impact of host genetic background on the infection and on survival rates. Hematological studies showed that the infection gave rise to severe anemia, and histopathological investigations in various organs showed multifocal inflammatory infiltrates associated with extramedullary hematopoiesis in the liver, and cerebral edema. The models developed are consistent with field observations and pave the way for subsequent in-depth studies into the pathogenesis of T. vivax - trypanosomosis
BioTIME 2.0 : expanding and improving a database of biodiversity time series
Funding: H2020 European Research Council (Grant Number(s): GA 101044975, GA 101098020).Motivation: Here, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables: Included The database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and Grain: Sampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and Grain: The earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample-level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of Measurement: The database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Format: csv and. SQL.Peer reviewe
International Indices as Models for the Rule of Law Scoreboard of the European Union: Methodological Issues
BioTIME 2.0 : expanding and improving a database of biodiversity time series
Motivation.
Here, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database.
Main Types of Variables Included.
The database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years.
Spatial Location and Grain.
Sampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size.
Time Period and Grain.
The earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample-level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric.
Major Taxa and Level of Measurement.
The database includes any eukaryotic taxa, with a combined total of 56,400 taxa.
Software Format.
csv and. SQL
Proline racemases are conserved mitogens: characterization of a Trypanosoma vivax proline racemase
International audienceTrypanosoma cruzi proline racemases (TcPRAC) are the only eukaryotic proline racemases described so far. Except their role in the interconversion of free L- and D-proline enantiomers, parasite TcPRACs are involved in major T. cruzi biological pathways. These essential enzymes are implicated in the process of parasite differentiation and the acquisition of virulence during metacyclogenesis and are currently considered as key targets for drug development against Chagas' disease. In this study, we searched for the presence of TcPRAC gene homologues among other trypanosomatid genomes. Despite the high degree of gene synteny observed in Kinetoplastidae genomes, PRAC genes are missing in Trypanosoma brucei, Trypanosoma congolense and Leishmania spp. genomes. Interestingly, we identified a hypothetical PRAC gene in Trypanosoma vivax that is the major hemoparasite responsible for livestock trypanosomiasis, a serious economical impact for most of African and South American countries. We report here that the product of this T. vivax gene is bona fide a proline racemase with an activity comparable to the one we described previously for TcPRAC. Inhibition studies using the pyrrole-2-carboxylic acid confirmed that this compound is a competitive inhibitor for both TcPRAC and TvPRAC enzymes. Similarly to TcPRAC and all members of the racemase family studied so far in other pathogenic and nosocomial bacteria, our results show that TvPRAC is a T-cell-independent B-cell mitogen. Therefore the product of the novel TvPRAC gene identified in T. vivax and reported herein has the potential to be used as a drug target for this parasite-based trypanosomiasis
- …
