9 research outputs found

    Umbelliferone prevents isoproterenol-induced myocardial injury by upregulating Nrf2/HO-1 signaling, and attenuating oxidative stress, inflammation, and cell death in rats

    Get PDF
    The role of oxidative injury and inflammatory response in cardiovascular diseases and heart failure has been well-acknowledged. This study evaluated the protective effect of umbelliferone (UMB), a coumarin with promising radical scavenging and anti-inflammatory activities, on myocardial injury induced by isoproterenol (ISO) in rats. Rats received 50 mg/kg UMB orally for 14 days and 85 mg/kg ISO twice at an interval of 24 h. Administration of ISO elevated serum troponin I, creatine kinase-MB and lactate dehydrogenase, and caused histopathological alterations, including degeneration, fatty vacuolation, myolysis, and atrophy of myocardial fibers. Malondialdehyde (MDA), nitric oxide (NO), nuclear factor-kappaB (NF-κB) p65, tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β were increased, whereas reduced glutathione (GSH), superoxide dismutase (SOD), and catalase were decreased in ISO-administered rats. UMB effectively ameliorated myocardial injury, alleviated cardiac function markers, MDA, NO, NF-κB p65, and the inflammatory mediators, and enhanced cellular antioxidants. Bax, caspase-3, and 8-OHdG were decreased, and Bcl-2 was increased in ISO-administered rats treated with UMB. In addition, UMB upregulated nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and heme oxygenase (HO)-1 in the heart of ISO-administered rats. In conclusion, UMB can protect the myocardium from oxidative injury, inflammatory response, and cell death induced by ISO by upregulating Nrf2/HO-1 signaling and antioxidants

    Factors associated with poor glycemic control among type-2 diabetes mellitus patients in Yemen

    Get PDF
    Purpose: To determine the status of glycemic control and its associated factors among adult patients with type 2 diabetes mellitus (T2DM) in Hodeidah City, Yemen. Methods: This cross-sectional study involved T2DM patients attending an outpatient clinic at the Military Hospital in Hodeidah, from January to March 2017. Relevant socio-demographic characteristics, clinical factors and self-management behaviours were recorded in face-to-face interviews. Blood pressure, body weight, and height measurements were also obtained. Glycosylated hemoglobin (HbA1c) and lipid profile were evaluated. Urine samples were also obtained and analysed by albuminuria assay. Results: Of 246 participants, 73.2 % showed poor glycemic control (HbA1c ≥ 7 %). Female patients, those aged ≥ 40 years, the illiterate, and Khat chewers were more likely to have poor glycemic control. Moreover, longer disease duration, insulin administration and albuminuria were significantly associated with poor glycemic control. In contrast, a healthy diet, physical exercise, proper self-monitoring of blood glucose levels and taking medicines as prescribed significantly increased the likelihood of good glycemic control. Conclusion: A majority of the Yemeni diabetic patients have poor glycemic control. To achieve better awareness, diabetes educational programs that highlight the benefits of self-management are recommended

    Hepatoprotective effect of taxifolin on cyclophosphamide-induced oxidative stress, inflammation, and apoptosis in mice: Involvement of Nrf2/HO-1 signaling

    Get PDF
    Taxifolin (TA) is a natural flavonoid found in many foods and medicinal plants with well-documented antioxidant and anti-inflammatory properties. Cyclophosphamide (CP) is an effective antineoplastic and immunosuppressive agent; however, it is associated with numerous adverse events, including hepatotoxicity. Herein, we aimed to investigate the potential protective effects of TA using a mouse model of CP-induced hepatotoxicity. Mice were co-treated with TA (25 and 50 mg/kg, orally) and CP (30 mg/kg, i.p.) for 10 consecutive days and sacrificed 24 hours later. CP induced increased transaminases (ALT and AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) paralleled with pronounced histopathological alterations in the liver. Moreover, hepatic tissues of CP-injected mice showed increased malondialdehyde (MDA), protein carbonyl, and nitric oxide (NO) levels, accompanied by decreased antioxidant defenses (glutathione [GSH], superoxide dismutase [SOD], and catalase [CAT]). Livers of CP-injected mice also showed increased inflammatory response (nuclear transcription factor kappa-B [NF-κB] p65 activation, increased levels of proinflammatory cytokines tumor necrosis factor alpha [TNF-α], interleukin 1 beta [IL-1β], and IL-6) and apoptosis (decreased Bcl-2 and increased Bax and caspase-3 expression levels). Remarkably, TA ameliorated markers of liver injury and histological damage in CP-injected mice. TA treatment also attenuated numerous markers of oxidative stress, inflammation, and apoptosis in the liver of CP-injected mice. This was accompanied by increased nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) expression in the liver tissues of CP-injected mice. Taken together, this study indicates that TA may represent a promising new avenue to prevent/treat CP-induced hepatotoxicity and perhaps other liver diseases associated with oxidative stress and inflammation

    Galangin Activates Nrf2 Signaling and Attenuates Oxidative Damage, Inflammation, and Apoptosis in a Rat Model of Cyclophosphamide-Induced Hepatotoxicity

    No full text
    Cyclophosphamide (CP) is a widely used chemotherapeutic agent; however, its clinical application is limited because of its multi-organ toxicity. Galangin (Gal) is a bioactive flavonoid with promising biological activities. This study investigated the hepatoprotective effect of Gal in CP-induced rats. Rats received Gal (15, 30 and 60 mg/kg/day) for 15 days followed by a single dose of CP at day 16. Cyclophosphamide triggered liver injury characterized by elevated serum transaminases, alkaline phosphatase (ALP) and lactate dehydrogenase (LDH), and histopathological manifestations. Increased hepatic reactive oxygen species, malondialdehyde, nitric oxide, and oxidative DNA damage along with declined glutathione and antioxidant enzymes were demonstrated in CP-administered rats. CP provoked hepatic nuclear factor-kappaB (NF-κB) phosphorylation and increased mRNA abundance of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) both expression and serum levels. Gal prevented CP-induced liver injury, boosted antioxidants and suppressed oxidative stress, DNA damage, NF-κB phosphorylation and pro-inflammatory mediators. Gal diminished Bax and caspase-3, and increased B-cell lymphoma-2 (Bcl-2) in liver of CP-administered rats. In addition, Gal increased peroxisome proliferator-activated receptor gamma (PPARγ) expression and activated hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) signaling showed by the increase in Nrf2, NAD(P)H: quinone acceptor oxidoreductase-1 (NQO-1) and heme oxygenase 1 (HO-1) in CP-administered rats. These findings suggest that Gal prevents CP hepatotoxicity through activation of Nrf2/HO-1 signaling and attenuation of oxidative damage, inflammation and cell death. Therefore, Gal might represent a promising adjuvant therapy to prevent hepatotoxicity in patients on CP treatment

    Cardioprotective Effect of Taxifolin against Isoproterenol-Induced Cardiac Injury through Decreasing Oxidative Stress, Inflammation, and Cell Death, and Activating Nrf2/HO-1 in Mice

    No full text
    Oxidative stress and inflammation are key components in cardiovascular diseases and heart dysfunction. Herein, we evaluated the protective effects of (+)-taxifolin (TAX), a potent flavonoid with significant antioxidant and anti-inflammatory actions, on myocardial oxidative tissue injury, inflammation, and cell death, using a mouse model of isoproterenol (ISO)-induced acute myocardial injury. Mice were given TAX (25 and 50 mg/kg, orally) for 14 days before receiving two subsequent injections of ISO (100 mg/kg, s.c.) at an interval of 24 h on the 15th and 16th days. The ISO-induced cardiac tissue injury was evidenced by increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH), along with several histopathological changes. The ISO also induced increased malondialdehyde (MDA) with concomitant declined myocardial glutathione level and antioxidant enzymes activities. Moreover, ISO-induced heart injury was accompained with elevated cardiac NF-κB p65, TNF-α, IL-1β, Bax, and caspase-3, as well as decreased Bcl-2, Nrf2, and HO-1. Remarkably, TAX reduced the severity of cardiac injury, oxidative stress, inflammation, and cell death, while enhancing antioxidants, Bcl-2, and Nrf2/HO-1 signaling in ISO-injected mice. In conclusion, TAX protects against ISO-induced acute myocardial injury via activating the Nrf2/HO-1 signaling pathway and attenuating the oxidative tissue injury and key regulators of inflammatory response and apoptosis. Thus, our findings imply that TAX may constitute a new cardioprotective therapy against acute MI, which undoubtedly deserves further exploration in upcoming human trials

    Spirulina platensis ameliorates the sub chronic toxicities of lead in rabbits via anti-oxidative, anti- inflammatory, and immune stimulatory properties

    No full text
    International audienceLead acetate (Pb) is an oldest and widespread environmental toxicant that led to cumulative injury in humans and all living organisms through induction of oxidative stress. Spirulina platensis (SP) is a cyanobacteria with strong antioxidant, anti-inflammatory, and immune stimulatory effects. In this study, the ameliorative effect of SP was evaluated against the dietary sub chronic lead toxicities in rabbits. A total number of 75 male New Zealand rabbits were allocated randomly into 5 groups; the first group feed on basal diet alone and served as control group, the second group feed on basal diet + 100 mg Pb /kg diet, the third, fourth, and the fifth groups feed on basal diet + 100 mg Pb /kg diet + SP (0.5, 1, or 1.5 g/kg diet; respectively), the experiment was extended for 8 weeks. Results revealed a significant improvement in some of growth parameters like final body weight and daily weight gain, blood parameters in rabbits treated with SP at level 1.5 g/kg diet followed by those receiving SP 1g /kg diet. However, a significant decrease in blood parameters, liver function, renal parameters, lipid profiles, oxidative parameters (malondialdehyde and protein carbonyl), heart indices (creatine phosphokinase, creatine kinase-muscle/brain, lactate dehydrogenase), total Pb residues in muscles, and area percent of nuclear factor kappa b immune expression were reported in groups supplemented with different levels of SP. Pathologic analysis of liver, kidneys, and heart revealed moderate to severe degenerative and necrotic changes in Pb- exposed rabbits, which is ameliorated with supplementation of SP in different levels. Conclusively, dietary supplementation of SP at different levels attenuated the cumulative effect of lead in rabbits in dose-dependent manner; this attenuation may be attributed to its anti-oxidative, anti-inflammatory, as well as its immune stimulant effect

    Punicalagin Protects against the Development of Methotrexate-Induced Hepatotoxicity in Mice via Activating Nrf2 Signaling and Decreasing Oxidative Stress, Inflammation, and Cell Death

    No full text
    Despite its effectiveness in treating inflammatory diseases and various malignancies, methotrexate (MTX) is well known to cause hepatotoxicity, which involves increased oxidative stress and inflammation, limiting its clinical use. Herein, we looked into the effect of punicalagin (PU), a polyphenolic molecule having a variety of health-promoting attributes, on MTX-induced hepatotoxicity in mice. PU (25 and 50 mg/kg/day) was given orally to the mice for 10 days, while a single dose of MTX (20 mg/kg) was injected intraperitoneally (i.p.) at day 7. The MTX-induced liver damage was demonstrated by remarkably higher transaminases (ALT and AST), ALP, and LDH, as well as significant histological alterations in hepatic tissues. MTX-injected mice also demonstrated increases in hepatic oxidative stress markers, including malondialdehyde (MDA) and nitric oxide (NO), with a concordant drop in glutathione (GSH) content and superoxide dismutase (SOD) and catalase (CAT) activities. PU significantly attenuated the MTX-induced serum transaminases, ALP and LDH elevations, and hepatic oxidative stress measures and boosted antioxidant defenses in the liver. Moreover, the liver of MTX-treated mice showed increases in NF-κB p65 expression, pro-inflammatory cytokine (IL-6 and TNF-α) levels, and pro-apoptotic protein (caspase-3 and Bax) expression, whereas Bcl-2 and Nrf2 expressions were reduced, which were all attenuated by PU treatment. Collectively, PU inhibits oxidative damage, inflammation, and apoptosis and upregulates Nrf2 in the liver of MTX-induced mice. Thus, these findings suggest that PU may have great therapeutic potential for the prevention of MTX-induced hepatotoxicity, pending further exploration in upcoming studies

    Upregulation of Nrf2/HO-1 Signaling and Attenuation of Oxidative Stress, Inflammation, and Cell Death Mediate the Protective Effect of Apigenin against Cyclophosphamide Hepatotoxicity

    No full text
    Liver injury is among the adverse effects of the chemotherapeutic agent cyclophosphamide (CP). This study investigated the protective role of the flavone apigenin (API) against CP-induced liver damage, pointing to the involvement of Nrf2/HO-1 signaling. Rats were treated with API (20 and 40 mg/kg) for 15 days and received CP (150 mg/kg) on day 16. CP caused liver damage manifested by an elevation of transaminases, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), and histological alterations, including granular vacuolation, mononuclear cell infiltration, and hydropic changes. Hepatic reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO) were increased and glutathione (GSH) and antioxidant enzymes were decreased in CP-administered rats. CP upregulated the inflammatory markers NF-κB p65, TNF-α, IL-6, and iNOS, along with the pro-apoptotic Bax and caspase-3. Pre-treatment with API ameliorated circulating transaminases, ALP, and LDH, and prevented histopathological changes in CP-intoxicated rats. API suppressed ROS, MDA, NO, NF-κB p65, iNOS, inflammatory cytokines, oxidative DNA damage, Bax, and caspase-3 in CP-intoxicated rats. In addition, API enhanced hepatic antioxidants and Bcl-2 and boosted the Nrf2 and HO-1 mRNA abundance and protein. In conclusion, API is effective in preventing CP hepatotoxicity by attenuating oxidative stress, the inflammatory response, and apoptosis. The hepatoprotective efficacy of API was associated with the upregulation of Nrf2/HO-1 signaling
    corecore