31 research outputs found

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402

    Age is the main determinant of COVID-19 related in-hospital mortality with minimal impact of pre-existing comorbidities, a retrospective cohort study

    No full text
    Background: Age and comorbidities increase COVID-19 related in-hospital mortality risk, but the extent by which comorbidities mediate the impact of age remains unknown. Methods: In this multicenter retrospective cohort study with data from 45 Dutch hospitals, 4806 proven COVID-19 patients hospitalized in Dutch hospitals (between February and July 2020) from the CAPACITY-COVID registry were included (age 69[58–77]years, 64% men). The primary outcome was defined as a combination of in-hospital mortality or discharge with palliative care. Logistic regression analysis was performed to analyze the associations between sex, age, and comorbidities with the primary outcome. The effect of comorbidities on the relation of age with the primary outcome was evaluated using mediation analysis. Results: In-hospital COVID-19 related mortality occurred in 1108 (23%) patients, 836 (76%) were aged ≥70 years (70+). Both age 70+ and female sex were univariably associated with outcome (odds ratio [OR]4.68, 95%confidence interval [4.02–5.45], OR0.68[0.59–0.79], respectively;both p< 0.001). All comorbidities were univariably associated with outcome (p<0.001), and all but dyslipidemia remained significant after adjustment for age70+ and sex. The impact of comorbidities was attenuated after age-spline adjustment, only leaving female sex, diabetes mellitus (DM), chronic kidney disease (CKD), and chronic pulmonary obstructive disease (COPD) significantly associated (female OR0.65[0.55–0.75], DM OR1.47[1.26–1.72], CKD OR1.61[1.32–1.97], COPD OR1.30[1.07–1.59]). Pre-existing comorbidities in older patients negligibly (<6% in all comorbidities) mediated the association between higher age and outcome. Conclusions: Age is the main determinant of COVID-19 related in-hospital mortality, with negligible mediation effect of pre-existing comorbidities. Trial registration: CAPACITY-COVID (NCT04325412)

    Cardiovascular and renal outcomes with empagliflozin in heart failure

    No full text
    BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of hospitalization for heart failure in patients regardless of the presence or absence of diabetes. More evidence is needed regarding the effects of these drugs in patients across the broad spectrum of heart failure, including those with a markedly reduced ejection fraction. METHODS In this double-blind trial, we randomly assigned 3730 patients with class II, III, or IV heart failure and an ejection fraction of 40% or less to receive empagliflozin (10 mg once daily) or placebo, in addition to recommended therapy. The primary outcome was a composite of cardiovascular death or hospitalization for worsening heart failure. RESULTS During a median of 16 months, a primary outcome event occurred in 361 of 1863 patients (19.4%) in the empagliflozin group and in 462 of 1867 patients (24.7%) in the placebo group (hazard ratio for cardiovascular death or hospitalization for heart failure, 0.75; 95% confidence interval [CI], 0.65 to 0.86; P&lt;0.001). The effect of empagliflozin on the primary outcome was consistent in patients regardless of the presence or absence of diabetes. The total number of hospitalizations for heart failure was lower in the empagliflozin group than in the placebo group (hazard ratio, 0.70; 95% CI, 0.58 to 0.85; P&lt;0.001). The annual rate of decline in the estimated glomerular filtration rate was slower in the empagliflozin group than in the placebo group (-0.55 vs. -2.28 ml per minute per 1.73 m2 of body-surface area per year, P&lt;0.001), and empagliflozin-treated patients had a lower risk of serious renal outcomes. Uncomplicated genital tract infection was reported more frequently with empagliflozin. CONCLUSIONS Among patients receiving recommended therapy for heart failure, those in the empagliflozin group had a lower risk of cardiovascular death or hospitalization for heart failure than those in the placebo group, regardless of the presence or absence of diabetes

    Alirocumab and cardiovascular outcomes after acute coronary syndrome

    No full text
    BACKGROUND Patients who have had an acute coronary syndrome are at high risk for recurrent ischemic cardiovascular events. We sought to determine whether alirocumab, a human monoclonal antibody to proprotein convertase subtilisin-kexin type 9 (PCSK9), would improve cardiovascular outcomes after an acute coronary syndrome in patients receiving high-intensity statin therapy. METHODS We conducted a multicenter, randomized, double-blind, placebo-controlled trial involving 18,924 patients who had an acute coronary syndrome 1 to 12 months earlier, had a low-density lipoprotein (LDL) cholesterol level of at least 70 mg per deciliter (1.8 mmol per liter), a non-highdensity lipoprotein cholesterol level of at least 100 mg per deciliter (2.6 mmol per liter), or an apolipoprotein B level of at least 80 mg per deciliter, and were receiving statin therapy at a high-intensity dose or at the maximum tolerated dose. Patients were randomly assigned to receive alirocumab subcutaneously at a dose of 75 mg (9462 patients) or matching placebo (9462 patients) every 2 weeks. The dose of alirocumab was adjusted under blinded conditions to target an LDL cholesterol level of 25 to 50 mg per deciliter (0.6 to 1.3 mmol per liter). The primary end point was a composite of death from coronary heart disease, nonfatal myocardial infarction, fatal or nonfatal ischemic stroke, or unstable angina requiring hospitalization. RESULTS The median duration of follow-up was 2.8 years. A composite primary end-point event occurred in 903 patients (9.5%) in the alirocumab group and in 1052 patients (11.1%) in the placebo group (hazard ratio, 0.85; 95% confidence interval [CI], 0.78 to 0.93; P<0.001). A total of 334 patients (3.5%) in the alirocumab group and 392 patients (4.1%) in the placebo group died (hazard ratio, 0.85; 95% CI, 0.73 to 0.98). The absolute benefit of alirocumab with respect to the composite primary end point was greater among patients who had a baseline LDL cholesterol level of 100 mg or more per deciliter than among patients who had a lower baseline level. The incidence of adverse events was similar in the two groups, with the exception of local injection-site reactions (3.8% in the alirocumab group vs. 2.1% in the placebo group). CONCLUSIONS Among patients who had a previous acute coronary syndrome and who were receiving highintensity statin therapy, the risk of recurrent ischemic cardiovascular events was lower among those who received alirocumab than among those who received placebo

    Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial

    No full text
    Background: Intravenous ferric carboxymaltose has been shown to improve symptoms and quality of life in patients with chronic heart failure and iron deficiency. We aimed to evaluate the effect of ferric carboxymaltose, compared with placebo, on outcomes in patients who were stabilised after an episode of acute heart failure. Methods: AFFIRM-AHF was a multicentre, double-blind, randomised trial done at 121 sites in Europe, South America, and Singapore. Eligible patients were aged 18 years or older, were hospitalised for acute heart failure with concomitant iron deficiency (defined as ferritin <100 μg/L, or 100–299 μg/L with transferrin saturation <20%), and had a left ventricular ejection fraction of less than 50%. Before hospital discharge, participants were randomly assigned (1:1) to receive intravenous ferric carboxymaltose or placebo for up to 24 weeks, dosed according to the extent of iron deficiency. To maintain masking of patients and study personnel, treatments were administered in black syringes by personnel not involved in any study assessments. The primary outcome was a composite of total hospitalisations for heart failure and cardiovascular death up to 52 weeks after randomisation, analysed in all patients who received at least one dose of study treatment and had at least one post-randomisation data point. Secondary outcomes were the composite of total cardiovascular hospitalisations and cardiovascular death; cardiovascular death; total heart failure hospitalisations; time to first heart failure hospitalisation or cardiovascular death; and days lost due to heart failure hospitalisations or cardiovascular death, all evaluated up to 52 weeks after randomisation. Safety was assessed in all patients for whom study treatment was started. A pre-COVID-19 sensitivity analysis on the primary and secondary outcomes was prespecified. This study is registered with ClinicalTrials.gov, NCT02937454, and has now been completed. Findings: Between March 21, 2017, and July 30, 2019, 1525 patients were screened, of whom 1132 patients were randomly assigned to study groups. Study treatment was started in 1110 patients, and 1108 (558 in the carboxymaltose group and 550 in the placebo group) had at least one post-randomisation value. 293 primary events (57·2 per 100 patient-years) occurred in the ferric carboxymaltose group and 372 (72·5 per 100 patient-years) occurred in the placebo group (rate ratio [RR] 0·79, 95% CI 0·62–1·01, p=0·059). 370 total cardiovascular hospitalisations and cardiovascular deaths occurred in the ferric carboxymaltose group and 451 occurred in the placebo group (RR 0·80, 95% CI 0·64–1·00, p=0·050). There was no difference in cardiovascular death between the two groups (77 [14%] of 558 in the ferric carboxymaltose group vs 78 [14%] in the placebo group; hazard ratio [HR] 0·96, 95% CI 0·70–1·32, p=0·81). 217 total heart failure hospitalisations occurred in the ferric carboxymaltose group and 294 occurred in the placebo group (RR 0·74; 95% CI 0·58–0·94, p=0·013). The composite of first heart failure hospitalisation or cardiovascular death occurred in 181 (32%) patients in the ferric carboxymaltose group and 209 (38%) in the placebo group (HR 0·80, 95% CI 0·66–0·98, p=0·030). Fewer days were lost due to heart failure hospitalisations and cardiovascular death for patients assigned to ferric carboxymaltose compared with placebo (369 days per 100 patient-years vs 548 days per 100 patient-years; RR 0·67, 95% CI 0·47–0·97, p=0·035). Serious adverse events occurred in 250 (45%) of 559 patients in the ferric carboxymaltose group and 282 (51%) of 551 patients in the placebo group. Interpretation: In patients with iron deficiency, a left ventricular ejection fraction of less than 50%, and who were stabilised after an episode of acute heart failure, treatment with ferric carboxymaltose was safe and reduced the risk of heart failure hospitalisations, with no apparent effect on the risk of cardiovascular death. Funding: Vifor Pharma

    Clinical presentation, disease course, and outcome of COVID-19 in hospitalized patients with and without pre-existing cardiac disease: a cohort study across 18 countries

    No full text
    Aims Patients with cardiac disease are considered high risk for poor outcomes following hospitalization with COVID-19. The primary aim of this study was to evaluate heterogeneity in associations between various heart disease subtypes and in-hospital mortality. Methods and results We used data from the CAPACITY-COVID registry and LEOSS study. Multivariable Poisson regression models were fitted to assess the association between different types of pre-existing heart disease and in-hospital mortality. A total of 16 511 patients with COVID-19 were included (21.1% aged 66-75 years; 40.2% female) and 31.5% had a history of heart disease. Patients with heart disease were older, predominantly male, and often had other comorbid conditions when compared with those without. Mortality was higher in patients with cardiac disease (29.7%; n= 1545 vs. 15.9%; n= 1797). However, following multivariable adjustment, this difference was not significant [adjusted risk ratio (aRR) 1.08, 95% confidence interval (CI) 1.02-1.15; P = 0.12 (corrected for multiple testing)]. Associations with in-hospital mortality by heart disease subtypes differed considerably, with the strongest association for heart failure (aRR 1.19, 95% CI 1.10-1.30; P <0.018) particularly for severe (New York Heart Association class III/IV) heart failure (aRR 1.41, 95% CI 1.20-1.64; P < 0.018). None of the other heart disease subtypes, including ischaemic heart disease, remained significant after multivariable adjustment. Serious cardiac complications were diagnosed in <1% of patients. Conclusion Considerable heterogeneity exists in the strength of association between heart disease subtypes and in-hospital mortality. Of all patients with heart disease, those with heart failure are at greatest risk of death when hospitalized with COVID-19. Serious cardiac complications are rare during hospitalization. [GRAPHICS]

    Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial

    No full text
    Background: Intravenous ferric carboxymaltose has been shown to improve symptoms and quality of life in patients with chronic heart failure and iron deficiency. We aimed to evaluate the effect of ferric carboxymaltose, compared with placebo, on outcomes in patients who were stabilised after an episode of acute heart failure. Methods: AFFIRM-AHF was a multicentre, double-blind, randomised trial done at 121 sites in Europe, South America, and Singapore. Eligible patients were aged 18 years or older, were hospitalised for acute heart failure with concomitant iron deficiency (defined as ferritin <100 μg/L, or 100–299 μg/L with transferrin saturation <20%), and had a left ventricular ejection fraction of less than 50%. Before hospital discharge, participants were randomly assigned (1:1) to receive intravenous ferric carboxymaltose or placebo for up to 24 weeks, dosed according to the extent of iron deficiency. To maintain masking of patients and study personnel, treatments were administered in black syringes by personnel not involved in any study assessments. The primary outcome was a composite of total hospitalisations for heart failure and cardiovascular death up to 52 weeks after randomisation, analysed in all patients who received at least one dose of study treatment and had at least one post-randomisation data point. Secondary outcomes were the composite of total cardiovascular hospitalisations and cardiovascular death; cardiovascular death; total heart failure hospitalisations; time to first heart failure hospitalisation or cardiovascular death; and days lost due to heart failure hospitalisations or cardiovascular death, all evaluated up to 52 weeks after randomisation. Safety was assessed in all patients for whom study treatment was started. A pre-COVID-19 sensitivity analysis on the primary and secondary outcomes was prespecified. This study is registered with ClinicalTrials.gov, NCT02937454, and has now been completed. Findings: Between March 21, 2017, and July 30, 2019, 1525 patients were screened, of whom 1132 patients were randomly assigned to study groups. Study treatment was started in 1110 patients, and 1108 (558 in the carboxymaltose group and 550 in the placebo group) had at least one post-randomisation value. 293 primary events (57·2 per 100 patient-years) occurred in the ferric carboxymaltose group and 372 (72·5 per 100 patient-years) occurred in the placebo group (rate ratio [RR] 0·79, 95% CI 0·62–1·01, p=0·059). 370 total cardiovascular hospitalisations and cardiovascular deaths occurred in the ferric carboxymaltose group and 451 occurred in the placebo group (RR 0·80, 95% CI 0·64–1·00, p=0·050). There was no difference in cardiovascular death between the two groups (77 [14%] of 558 in the ferric carboxymaltose group vs 78 [14%] in the placebo group; hazard ratio [HR] 0·96, 95% CI 0·70–1·32, p=0·81). 217 total heart failure hospitalisations occurred in the ferric carboxymaltose group and 294 occurred in the placebo group (RR 0·74; 95% CI 0·58–0·94, p=0·013). The composite of first heart failure hospitalisation or cardiovascular death occurred in 181 (32%) patients in the ferric carboxymaltose group and 209 (38%) in the placebo group (HR 0·80, 95% CI 0·66–0·98, p=0·030). Fewer days were lost due to heart failure hospitalisations and cardiovascular death for patients assigned to ferric carboxymaltose compared with placebo (369 days per 100 patient-years vs 548 days per 100 patient-years; RR 0·67, 95% CI 0·47–0·97, p=0·035). Serious adverse events occurred in 250 (45%) of 559 patients in the ferric carboxymaltose group and 282 (51%) of 551 patients in the placebo group. Interpretation: In patients with iron deficiency, a left ventricular ejection fraction of less than 50%, and who were stabilised after an episode of acute heart failure, treatment with ferric carboxymaltose was safe and reduced the risk of heart failure hospitalisations, with no apparent effect on the risk of cardiovascular death. Funding: Vifor Pharma

    Lipoprotein(a) and Benefit of PCSK9 Inhibition in Patients With Nominally Controlled LDL Cholesterol

    No full text
    Background: Guidelines recommend nonstatin lipid-lowering agents in patients at very high risk for major adverse cardiovascular events (MACE) if low-density lipoprotein cholesterol (LDL-C) remains ≥70 mg/dL on maximum tolerated statin treatment. It is uncertain if this approach benefits patients with LDL-C near 70 mg/dL. Lipoprotein(a) levels may influence residual risk. Objectives: In a post hoc analysis of the ODYSSEY Outcomes (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) trial, the authors evaluated the benefit of adding the proprotein subtilisin/kexin type 9 inhibitor alirocumab to optimized statin treatment in patients with LDL-C levels near 70 mg/dL. Effects were evaluated according to concurrent lipoprotein(a) levels. Methods: ODYSSEY Outcomes compared alirocumab with placebo in 18,924 patients with recent acute coronary syndromes receiving optimized statin treatment. In 4,351 patients (23.0%), screening or randomization LDL-C was 13.7 mg/dL or ≤13.7 mg/dL; corresponding adjusted treatment hazard ratios were 0.82 (95% CI: 0.72-0.92) and 0.89 (95% CI: 0.75-1.06), with Pinteraction = 0.43. Conclusions: In patients with recent acute coronary syndromes and LDL-C near 70 mg/dL on optimized statin therapy, proprotein subtilisin/kexin type 9 inhibition provides incremental clinical benefit only when lipoprotein(a) concentration is at least mildly elevated. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402
    corecore