46 research outputs found

    Russian Intervention Strategy in Syria

    Get PDF
    The research aimed to investigate the Russian intervention strategy in Syria. Therefore the research handled the background of the relation between the two countries. The reasons and the motivations for Russian intervention in Syria and Russian hidden objectives. The study concluded that Russian intervention in Syriais mainly based on Russian interests

    The Legitimacy of Using Cross-Border Force to Counter-Terrorism before and after September 11 Attacks in the Light of the Right of Self-Defense

    Get PDF
    The international community has allowed counter-terrorism by the use of cross-border force in the twenty first century as a respond to September 11 attacks to eliminate terrorism that has constituted a serious threat to the international peace and security. It is argued that the use of cross-border force violates article 2(4) of the Charter of the UN that stipulates the refrain from the threat or the use of force in international relations to prevent the intervention in internal and external affairs and protect the territorial integrity, sovereignty and political independence of state members. Indeed, the international community before September 11 attacks rejected the use of force as a respond to terrorist attacks by asserting the context of article 2(4) and limiting the authority of using force under the right of self-defence, which is referred in article 51 of the Charter of the UN, to counter current armed attacks that did not include terrorist attacks. Nonetheless, the international community after September 11 attacks has admitted the use of cross-border force to counter-terrorism by activating the right of anticipatory self-defence and considering terrorism as imminent threat of armed attack. However, this has undermined the obligation of refrain from the intervention in internal and external affairs and protect the territorial integrity, sovereignty and political independence of state members, according to article 2(4). Also, powerful states may misuse this authority by a way threats the stability of other states, when the former invokes counter-terrorism as a reason to use power against other states in order invade the latter’s territories by derogating from article 2(4) of the Charter of the UN. Keywords: September 11 Attacks, Counter-Terrorism, Self-Defens

    The effectiveness of the combined treatment of metastatic brain tumors

    Get PDF
    Aim: Evaluation of effectiveness of radiation therapy (RT) and chemotherapy (CT) of metastatic brain tumors (MBT) in post-operational period.Materials and methods: 49 patients with MBT were observated: 4 (12,9%) cases — in frontal lobe, 2 (6,5%) — in temporal, 8 (25,8%) — in parietal, 4 (12,9%) — in occipital, 7 (22,6%) — in cerebellum hemisphere, 2 (6,5%) — in skull bones, by 1 (3,2%) — in ponto-cerebellar angle, hypophysis, brain tunic, frontal sinus.Results: Adenocarcinoma was diagnosed in 35 (71,4%) cases, melanoblastoma — 13 (26,6%), sarcoma — 1 (2,0%). Primary source was revealed in 31 patients: in skin — 13 (41,9%), in lungs — 6 (19,4%), in breast and kidneys — 4 (12,9%) accordingly, by 1 (3,2%) case in thymus, ovary, uterus, external sexual organs. Operation was radical in 32 (65,3%) persons, subtotal — in 14 (28,6%), partial — in 2 (4,1%), in 1 — biopsy. In early period 1 (2,0%) patient died (thromboemboly of pulmonary artery), the rest 48 were distributed into groups which underwent: in 1st group only CT — 9 (18,8%) persons; in 2nd group only RT — 6 (12,5%); in 3rd group RT and CT — 3 (6,3%); the rest 30 (62,4%) did not undergo any special treatment. In one year survived: in 3rd group — 100%, in 1st and 2nd groups — 66,7%; in persons without treatment — 33,3%.Conclusion: In MBT combination of RT and CT is the best tactics of treatment. Further perspective is continuation of research with evaluation of patients health-related quality of life

    Chemical tuning for potential antitumor fluoroquinolones

    Full text link
    [EN] Phototoxic effects of 6,8 dihalogenated quinolones confers to this type of molecules a potential property as photochemotherapeutic agents. Two photodehalogenation processes seem to be involved in the remarkable photoinduced cellular damage. In this context, a new 6,8 dihalogenated quinolone 1 (1-methyl-6,8-difluoro-4-oxo-7-aminodimethy1-1,4-dihydroquinoline-3-carboxylic acid) was synthesized looking for improving the phototoxic properties of fluoroquinolones (FQ) and to determine the role of the photodegradation pathways in the FQ phototoxicity. With this purpose, fluorescence emissions, laser flash photolysis experiments and photodegradation studies were performed with compound 1 using 1-ethyl-6,8-difluoro-4-oxo-7-aminodimethy1-1,4-dihidroquinoline-3-carboxylic acid (2) and lomefloxacin (LFX) as reference compounds. The shortening of alkyl chain of the N(1) of the quinolone ring revealed a lifetime increase of the reactive aryl cation generated from photolysis of the three FQ and a significant reduction of the FQ photodegradation quantum yield. The fact that these differences were smaller when the same study was done using a hydrogen donor solvent (ethanol-aqueous buffer, 50/50 v/v) evidenced the highest ability of the reactive intermediate arising from 1 to produce intermolecular alkylations. These results were correlated with in vitro 3T3 NRU phototoxicity test. Thus, when PhotoIrritation-Factor (PIF) was determined for 1, 2 and LFX using cytotoxicity profiles of BALB/c 3T3 fibroblasts treated with each compound in the presence and absence of UVA light, a PIF more higher than 30 was obtained for 1 while the values for 2 and LFX were only higher than 8 and 10, respectively. Thereby, the present study illustrates an approach to modulate the photosensitizing properties of FQ with the purpose to improve the chemotherapeutic properties of antitumor quinolones. Moreover, the results obtained in this study also evidence that the key pathway responsible for the phototoxic properties associated with dihalogenated quinolones is the aryl cation generation.Financial support from Spanish government (MINECO grant CTQ2014-54729-C2-2-P and Severo Ochoa fellowship for C. A., Carlos III Institute of Health grant PI16/01877), and the Generalitat Valenciana (PROMETEO program, 2017-075). We thank M.P. Marin of IIS La Fe Microscopy Unit for confocal microscopy.Anaya-González, C.; Soldevila Serrano, S.; García-Laínez, G.; Bosca Mayans, F.; Andreu Ros, MI. (2019). Chemical tuning for potential antitumor fluoroquinolones. Free Radical Biology and Medicine. 141:150-158. https://doi.org/10.1016/j.freeradbiomed.2019.06.010S150158141Domagala, J. M., Hanna, L. D., Heifetz, C. L., Hutt, M. P., Mich, T. F., Sanchez, J. P., & Solomon, M. (1986). New structure-activity relationships of the quinolone antibacterials using the target enzyme. The development and application of a DNA gyrase assay. Journal of Medicinal Chemistry, 29(3), 394-404. doi:10.1021/jm00153a015Kang, D.-H., Kim, J.-S., Jung, M.-J., Lee, E.-S., Jahng, Y., Kwon, Y., & Na, Y. (2008). New insight for fluoroquinophenoxazine derivatives as possibly new potent topoisomerase I inhibitor. Bioorganic & Medicinal Chemistry Letters, 18(4), 1520-1524. doi:10.1016/j.bmcl.2007.12.053Azéma, J., Guidetti, B., Dewelle, J., Le Calve, B., Mijatovic, T., Korolyov, A., … Kiss, R. (2009). 7-((4-Substituted)piperazin-1-yl) derivatives of ciprofloxacin: Synthesis and in vitro biological evaluation as potential antitumor agents. Bioorganic & Medicinal Chemistry, 17(15), 5396-5407. doi:10.1016/j.bmc.2009.06.053Cullen, M., & Baijal, S. (2009). Prevention of febrile neutropenia: use of prophylactic antibiotics. British Journal of Cancer, 101(S1), S11-S14. doi:10.1038/sj.bjc.6605270Kim, K., Pollard, J. M., Norris, A. J., McDonald, J. T., Sun, Y., Micewicz, E., … McBride, W. H. (2009). High-Throughput Screening Identifies Two Classes of Antibiotics as Radioprotectors: Tetracyclines and Fluoroquinolones. Clinical Cancer Research, 15(23), 7238-7245. doi:10.1158/1078-0432.ccr-09-1964Al-Trawneh, S. A., Zahra, J. A., Kamal, M. R., El-Abadelah, M. M., Zani, F., Incerti, M., … Vicini, P. (2010). Synthesis and biological evaluation of tetracyclic fluoroquinolones as antibacterial and anticancer agents. Bioorganic & Medicinal Chemistry, 18(16), 5873-5884. doi:10.1016/j.bmc.2010.06.098Aldred, K. J., Schwanz, H. A., Li, G., Williamson, B. H., McPherson, S. A., Turnbough, C. L., … Osheroff, N. (2015). Activity of Quinolone CP-115,955 Against Bacterial and Human Type II Topoisomerases Is Mediated by Different Interactions. Biochemistry, 54(5), 1278-1286. doi:10.1021/bi501073vPommier, Y., Leo, E., Zhang, H., & Marchand, C. (2010). DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chemistry & Biology, 17(5), 421-433. doi:10.1016/j.chembiol.2010.04.012Palumbo, M., Gatto, B., Zagotto, G., & Palù, G. (1993). On the mechanism of action of quinolone drugs. Trends in Microbiology, 1(6), 232-235. doi:10.1016/0966-842x(93)90138-hPaul, M., Gafter-Gvili, A., Fraser, A., & Leibovici, L. (2007). The anti-cancer effects of quinolone antibiotics? European Journal of Clinical Microbiology & Infectious Diseases, 26(11), 825-831. doi:10.1007/s10096-007-0375-4Perrone, C. E. (2002). Inhibition of Human Topoisomerase IIalpha by Fluoroquinolones and Ultraviolet A Irradiation. Toxicological Sciences, 69(1), 16-22. doi:10.1093/toxsci/69.1.16Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2009). Photosensitized DNA Damage: The Case of Fluoroquinolones. Photochemistry and Photobiology, 85(4), 861-868. doi:10.1111/j.1751-1097.2009.00548.xMarrot, L., Belaïdi, J. P., Jones, C., Perez, P., Meunier, J. R., Riou, L., & Sarasin, A. (2003). Molecular Responses to Photogenotoxic Stress Induced by the Antibiotic Lomefloxacin in Human Skin Cells: From DNA Damage to Apoptosis. Journal of Investigative Dermatology, 121(3), 596-606. doi:10.1046/j.1523-1747.2003.12422.xMeunier, J.-R., Sarasin, A., & Marrot, L. (2002). Photogenotoxicity of Mammalian Cells: A Review of the Different Assays for In Vitro Testing¶. Photochemistry and Photobiology, 75(5), 437. doi:10.1562/0031-8655(2002)0752.0.co;2Martinez, L. J., Li, G., & Chignell, C. F. (1997). Photogeneration of Fluoride by the Fluoroquinolone Antimicrobial Agents Lomefloxacin and Fleroxacin. Photochemistry and Photobiology, 65(3), 599-602. doi:10.1111/j.1751-1097.1997.tb08612.xChignell, C. F., Haseman, J. K., Sik, R. H., Tennant, R. W., & Trempus, C. S. (2003). Photocarcinogenesis in the Tg.AC Mouse: Lomefloxacin and 8-Methoxypsoralen¶†. Photochemistry and Photobiology, 77(1), 77. doi:10.1562/0031-8655(2003)0772.0.co;2Fasani, E., Profumo, A., & Albini, A. (1998). Structure and Medium-Dependent Photodecomposition of Fluoroquinolone Antibiotics. Photochemistry and Photobiology, 68(5), 666-674. doi:10.1111/j.1751-1097.1998.tb02527.xJeffrey, A. M., Shao, L., Brendler-Schwaab, S. Y., Schlüter, G., & Williams, G. M. (2000). Photochemical mutagenicity of phototoxic and photochemically carcinogenic fluoroquinolones in comparison with the photostable moxifloxacin. Archives of Toxicology, 74(9), 555-559. doi:10.1007/s002040000162Spratt, T. E., Schultz, S. S., Levy, D. E., Chen, D., Schlüter, G., & Williams, G. M. (1999). Different Mechanisms for the Photoinduced Production of Oxidative DNA Damage by Fluoroquinolones Differing in Photostability. Chemical Research in Toxicology, 12(9), 809-815. doi:10.1021/tx980224jReus, A. A., Usta, M., Kenny, J. D., Clements, P. J., Pruimboom-Brees, I., Aylott, M., … Krul, C. A. . (2012). The in vivo rat skin photomicronucleus assay: phototoxicity and photogenotoxicity evaluation of six fluoroquinolones. Mutagenesis, 27(6), 721-729. doi:10.1093/mutage/ges038Soldevila, S., & Bosca, F. (2012). Photoreactivity of Fluoroquinolones: Nature of Aryl Cations Generated in Water. Organic Letters, 14(15), 3940-3943. doi:10.1021/ol301694pCuquerella, M. C., Miranda, M. A., & Boscá, F. (2006). Generation of Detectable Singlet Aryl Cations by Photodehalogenation of Fluoroquinolones. The Journal of Physical Chemistry B, 110(13), 6441-6443. doi:10.1021/jp060634dFreccero, M., Fasani, E., Mella, M., Manet, I., Monti, S., & Albini, A. (2008). Modeling the Photochemistry of the Reference Phototoxic Drug Lomefloxacin by Steady-State and Time-Resolved Experiments, and DFT and Post-HF Calculations. Chemistry - A European Journal, 14(2), 653-663. doi:10.1002/chem.200701099Albini, A., & Monti, S. (2003). Photophysics and photochemistry of fluoroquinolones. Chemical Society Reviews, 32(4), 238. doi:10.1039/b209220bFasani, E., Manet, I., Capobianco, M. L., Monti, S., Pretali, L., & Albini, A. (2010). Fluoroquinolones as potential photochemotherapeutic agents: covalent addition to guanosine monophosphate. Organic & Biomolecular Chemistry, 8(16), 3621. doi:10.1039/c0ob00056fSoldevila, S., Cuquerella, M. C., & Bosca, F. (2014). Understanding of the Photoallergic Properties of Fluoroquinolones: Photoreactivity of Lomefloxacin with Amino Acids and Albumin. Chemical Research in Toxicology, 27(4), 514-523. doi:10.1021/tx400377sSoldevila, S., Consuelo Cuquerella, M., Lhiaubet-Vallet, V., Edge, R., & Bosca, F. (2014). Seeking the mechanism responsible for fluoroquinolone photomutagenicity: a pulse radiolysis, steady-state, and laser flash photolysis study. Free Radical Biology and Medicine, 67, 417-425. doi:10.1016/j.freeradbiomed.2013.11.027Domagala, J. M., Heifetz, C. L., Hutt, M. P., Mich, T. F., Nichols, J. B., Solomon, M., & Worth, D. F. (1988). 1-Substituted 7-[3-[(ethylamino)methyl]-1-pyrrolidinyl]-6,8-difluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acids. New quantitative structure activity relationships at N1 for the quinolone antibacterials. Journal of Medicinal Chemistry, 31(5), 991-1001. doi:10.1021/jm00400a017Schmidt, R., Tanielian, C., Dunsbach, R., & Wolff, C. (1994). Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization. Journal of Photochemistry and Photobiology A: Chemistry, 79(1-2), 11-17. doi:10.1016/1010-6030(93)03746-4Garcia-Lainez, G., Martínez-Reig, A. M., Limones-Herrero, D., Consuelo Jiménez, M., Miranda, M. A., & Andreu, I. (2018). Photo(geno)toxicity changes associated with hydroxylation of the aromatic chromophores during diclofenac metabolism. Toxicology and Applied Pharmacology, 341, 51-55. doi:10.1016/j.taap.2018.01.005Palumbo, F., Garcia-Lainez, G., Limones-Herrero, D., Coloma, M. D., Escobar, J., Jiménez, M. C., … Andreu, I. (2016). Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites. Toxicology and Applied Pharmacology, 313, 131-137. doi:10.1016/j.taap.2016.10.024Martinez, L. J., Sik, R. H., & Chignell, C. F. (1998). Fluoroquinolone Antimicrobials: Singlet Oxygen, Superoxide and Phototoxicity. Photochemistry and Photobiology, 67(4), 399-403. doi:10.1111/j.1751-1097.1998.tb05217.xFasani, E., Monti, S., Manet, I., Tilocca, F., Pretali, L., Mella, M., & Albini, A. (2009). Inter- and Intramolecular Photochemical Reactions of Fleroxacin. Organic Letters, 11(9), 1875-1878. doi:10.1021/ol900189vBelvedere, A., Boscá, F., Catalfo, A., Cuquerella, M. C., de Guidi, G., & Miranda, M. A. (2002). Type II Guanine Oxidation Photoinduced by the Antibacterial Fluoroquinolone Rufloxacin in Isolated DNA and in 2‘-Deoxyguanosine. Chemical Research in Toxicology, 15(9), 1142-1149. doi:10.1021/tx025530iCuquerella, M. C., Boscá, F., Miranda, M. A., Belvedere, A., Catalfo, A., & de Guidi, G. (2003). Photochemical Properties of Ofloxacin Involved in Oxidative DNA Damage:  A Comparison with Rufloxacin. Chemical Research in Toxicology, 16(4), 562-570. doi:10.1021/tx034006oMonti, S., & Sortino, S. (2002). Laser flash photolysis study of photoionization in fluoroquinolones. Photochemical & Photobiological Sciences, 1(11), 877-881. doi:10.1039/b206750aSeto, Y., Inoue, R., Ochi, M., Gandy, G., Yamada, S., & Onoue, S. (2011). Combined Use of In Vitro Phototoxic Assessments and Cassette Dosing Pharmacokinetic Study for Phototoxicity Characterization of Fluoroquinolones. The AAPS Journal, 13(3). doi:10.1208/s12248-011-9292-7Sauvaigo, S., Douki, T., Odin, F., Caillat, S., Ravanat, J.-L., & Cadet, J. (2001). Analysis of Fluoroquinolone-mediated Photosensitization of 2′-Deoxyguanosine, Calf Thymus and Cellular DNA: Determination of Type-I, Type-II and Triplet–Triplet Energy Transfer Mechanism Contribution¶. Photochemistry and Photobiology, 73(3), 230. doi:10.1562/0031-8655(2001)0732.0.co;2Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054

    Effect of thiophene rings rigidity on dye-sensitized solar cell performance. Dithienothiophene versus terthiophene as π− donor moiety

    No full text
    Solar cells are fabricated based on two new dyes. Dye acts as an additive to thin layer interface. The effect of the π-conjugated rigidity of the thiophene rings on the photovoltaic characteristics has been investigated. The structures of the dye 1 was based on dithieno [3,2-b:2′,3′-d] thiophene-2-cyanoacrylic acid, while dye 2 was based on [2,2':5′,2″-terthiophene]-5-cyanoacrylic acid and were confirmed by elemental analysis, mass spectrometry, 1H NMR and 13C NMR spectral data. The P3HT/dye 1/nc-TiO2 solar cell produced the highest efficiency of 0.3 % with an open circuit voltage of 0.7 V compared to dye 2 solar cell. This has been attributed to the difference in energy levels of the dyes and location of their HOMO relative to conduction and valence bands of nc-TiO2. The dye 1 has rigid fused thiophene rings and its HOMO is located between valence band of TiO2 and HOMO of P3HT which leads to improve the charge carrier separation and increase the current density to reach 1.2 mA/cm2
    corecore