25 research outputs found

    The Gln27Glu Polymorphism in β2-Adrenergic receptor gene is linked to hypertriglyceridemia, hyperinsulinemia and hyperleptinemia in Saudis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β2-adrenoceptor (β2AR) gene polymorphism glutamine 27 glutamic acid (Gln27Glu) and Arg16Gly were reported to have an association with obesity and obesity related disorders in some population. We evaluated Gln27Glu polymorphism in the β2AR gene in obese Saudi populations to investigate the association of β2AR gene with obesity and other related metabolic parameters.</p> <p>Design</p> <p>We studied possible association of Gln27Glu in β2AR gene with body mass index (BMI), anthropometric measurements and other metabolic parameters. The β2AR gene polymorphism (Gln27Glu) was identified by sequencing PCR products representing locus of interest. Based on BMI, the subjects were divided into three groups, normal weight, overweight and obese. The genotype and allele frequency were calculated separately for each group.</p> <p>Results</p> <p>The allelic frequency of Glu27 did not differ amongst the three groups, though the Glu27 homozygote (Glu/Glu) were more in obese subjects and had higher concentration of triglyceride, leptin and insulin compared to in the Gln27 heterozygotes and Gln/Gln homozygotes.</p> <p>Conclusions</p> <p>In this study we were able to provide evidence on the influence of Gln27Glu genetic variant of β2AR gene on lipid phenotypes, insulin and leptin levels in the Saudi populations.</p

    Chromosome 12q24.31-q24.33 deletion causes multiple dysmorphic features and developmental delay: First mosaic patient and overview of the phenotype related to 12q24qter defects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic imbalances of the 12q telomere are rare; only a few patients having 12q24.31-q24.33 deletions were reported. Interestingly none of these were mosaic. Although some attempts have been made to establish phenotype/genotype interaction for the deletions in this region, no clear relationship has been established to date.</p> <p>Results</p> <p>We have clinically screened more than 100 patients with dysmorphic features, mental retardation and normal karyotype using high density oligo array-CGH (aCGH) and identified a ~9.2 Mb hemizygous interstitial deletion at the 12q telomere (Chromosome 12: 46,XY,del(12)(q24.31q24.33) in a severely developmentally retarded patient having dysmorphic features such as low set ears, microcephaly, undescended testicles, bent elbow, kyphoscoliosis, and micropenis. Parents were found to be not carriers. MLPA experiments confirmed the aCGH result. Interphase FISH revealed mosaicism in cultured peripheral blood lymphocytes.</p> <p>Conclusions</p> <p>Since conventional G-Banding technique missed the abnormality; this work re-confirms that any child with unexplained developmental delay and systemic involvement should be studied by aCGH techniques. The FISH technique, however, would still be useful to further delineate the research work and identify such rare mosaicism. Among the 52 deleted genes, <it>P2RX2, ULK1, FZD10, RAN, NCOR2 STX2, TESC, FBXW8</it>, and <it>TBX3 </it>are noteworthy since they may have a role in observed phenotype.</p

    Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2.

    Get PDF
    Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms

    Bi-allelic variants in HOPS complex subunit VPS41 cause cerebellar ataxia and abnormal membrane trafficking.

    Get PDF
    Membrane trafficking is a complex, essential process in eukaryotic cells responsible for protein transport and processing. Deficiencies in vacuolar protein sorting (VPS) proteins, key regulators of trafficking, cause abnormal intracellular segregation of macromolecules and organelles and are linked to human disease. VPS proteins function as part of complexes such as the homotypic fusion and vacuole protein sorting (HOPS) tethering complex, composed of VPS11, VPS16, VPS18, VPS33A, VPS39 and VPS41. The HOPS-specific subunit VPS41 has been reported to promote viability of dopaminergic neurons in Parkinson's disease but to date has not been linked to human disease. Here, we describe five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function

    Individualized medicine enabled by genomics in Saudi Arabia

    Full text link

    New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism.

    Get PDF
    Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism

    Assessment of the Knowledge and Attitudes of Saudi Mothers towards Newborn Screening

    No full text
    Objective. To assess the attitude and knowledge of the Saudi mothers toward newborn screening (NBS) program. Methods. A total of 425 Saudi women (only mothers who have at least one pregnancy) participated in the study from different regions in Saudi Arabia and completed the structured questionnaire which sought their views on the NBS services. Results. A majority of the participating women (91.1%) supported the NBS program and felt it was very important and useful. However, knowledge of NBS was found to be very limited and only 34.6% knew that NBS was a test to detect genetic disorders. A lack of communication and counseling to NBS clients by health authorities offering screening is implied. Conclusion. In general, there is a positive attitude towards the NBS program among Saudi women. However, they have several concerns to improve the availability of medication and formulas, genetic counseling, medical interventions, communication, education materials, and awareness

    Arginine 16 Glycine Polymorphism in β2-Adrenergic Receptor Gene Is Associated with Obesity, Hyperlipidemia, Hyperleptinemia, and Insulin Resistance in Saudis

    Get PDF
    Background. Several studies have shown an association between codon 16 polymorphism of the β2AR gene and obesity. Methods. We studied the association between Arg16Gly polymorphism and obesity and its influence on anthropometric parameters, lipids, insulin resistance and leptin in Saudi individuals. The study group included 329 individuals (males: 109 and females: 220). Metabolic parameters, including glucose, lipids, insulin, and leptin were analyzed and anthropometric parameters including waist and hip circumference, waist/hip (W/H) ratio, and body mass index (BMI) were measured and HOMA-IR was calculated. Genotyping was conducted by DNA sequencing of 353 bp fragments, carrying the Arg16Gly polymorphic site. Results and Conclusion. Overweight and obese subjects had a significantly higher frequency of Gly16 (0.375 and 0.38, resp.) compared with normal-weight subjects (0.200). In addition, subjects carrying Gly16 allele regardless of their BMI had greater waist and hip circumference, W/H ratio, plasma lipids, leptin, glucose level, and insulin resistance as judged from the HOMA-IR, compared to those with the wild-type allele. The findings of this study show a significant association between the Arg16Gly polymorphism in β2AR gene and the development of insulin resistance, overweight, and obesity in Saudi populations with an influence on the levels of lipid and leptin

    Molecular Analysis of Congenital Hypothyroidism in Saudi Arabia:SLC26A7 Mutation Is a Novel Defect in Thyroid Dyshormonogenesis

    No full text
    Abstract Context Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder, affecting one in 3000 to 4000 newborns. Since the introduction of a newborn screening program in 1988, more than 300 cases have been identified. The underlying genetic defects have not been systematically studied. Objective To identify the mutation spectrum of CH-causing genes. Methods Fifty-five patients from 47 families were studied by next-generation exome sequencing. Results Mutations were identified in 52.7% of patients (29 of 55) in the following 11 genes: TG, TPO, DUOX2, SLC26A4, SLC26A7, TSHB, TSHR, NKX2-1, PAX8, CDCA8, and HOXB3. Among 30 patients with thyroid dyshormonogenesis, biallelic TG mutations were found in 12 patients (40%), followed by biallelic mutations in TPO (6.7%), SLC26A7 (6.7%), and DUOX2 (3.3%). Monoallelic SLC26A4 mutations were found in two patients, one of them coexisting with two tandem biallelic deletions in SLC26A7. In 25 patients with thyroid dysgenesis, biallelic mutations in TSHR were found in six patients (24%). Biallelic mutations in TSHB, PAX 8, NKX2-1, or HOXB3 were found once in four different patients. A monoallelic CDCA8 mutation was found in one patient. Most mutations were novel, including three TG, two TSHR, and one each in DUOX2, TPO, SLC26A7, TSHB, NKX2-1, PAX8, CDCA8, and HOXB3. SLC26A7 and HOXB3 were novel genes associated with thyroid dyshormonogenesis and dysgenesis, respectively. Conclusions TG and TSHR mutations are the most common genetic defects in Saudi patients with CH. The prevalence of other disease-causing mutations is low, reflecting the consanguineous nature of the population. SLC26A7 mutations appear to be associated with thyroid dyshormonogenesis. </jats:sec
    corecore