9 research outputs found

    The Transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma

    No full text
    Most patients with BRAF-mutant metastatic melanoma display remarkable but incomplete and short-lived responses to inhibitors of the BRAF kinase or the mitogen-activated protein kinase kinase (MEK), collectively BRAF/MEK inhibitors. We found that inherent resistance to these agents in BRAF(V600)-mutant melanoma cell lines was associated with high abundance of c-JUN and characteristics of a mesenchymal-like phenotype. Early drug adaptation in drug-sensitive cell lines grown in culture or as xenografts, and in patient samples during therapy, was consistently characterized by down-regulation of SPROUTY4 (a negative feedback regulator of receptor tyrosine kinases and the BRAF-MEK signaling pathway), increased expression of JUN and reduced expression of LEF1. This coincided with a switch in phenotype that resembled an epithelial-mesenchymal transition (EMT). In cultured cells, these BRAF inhibitor-induced changes were reversed upon removal of the drug. Knockdown of SPROUTY4 was sufficient to increase the abundance of c-JUN in the absence of drug treatment. Overexpressing c-JUN in drug-naïve melanoma cells induced similar EMT-like phenotypic changes to BRAF inhibitor treatment, whereas knocking down JUN abrogated the BRAF inhibitor-induced early adaptive changes associated with resistance and enhanced cell death. Combining the BRAF inhibitor with an inhibitor of c-JUN amino-terminal kinase (JNK) reduced c-JUN phosphorylation, decreased cell migration, and increased cell death in melanoma cells. Gene expression data from a panel of melanoma cell lines and a patient cohort showed that JUN expression correlated with a mesenchymal gene signature, implicating c-JUN as a key mediator of the mesenchymal-like phenotype associated with drug resistance.13 page(s

    DUSP5 is methylated in CIMP-high colorectal cancer but is not a major regulator of intestinal cell proliferation and tumorigenesis

    Get PDF
    Abstract The ERK signalling pathway regulates key cell fate decisions in the intestinal epithelium and is frequently dysregulated in colorectal cancers (CRCs). Variations in the dynamics of ERK activation can induce different biological outcomes and are regulated by multiple mechanisms, including activation of negative feedback loops involving transcriptional induction of dual-specificity phosphatases (DUSPs). We have found that the nuclear ERK-selective phosphatase DUSP5 is downregulated in colorectal tumours and cell lines, as previously observed in gastric and prostate cancer. The DUSP5 promoter is methylated in a subset of CRC cell lines and primary tumours, particularly those with a CpG island methylator phenotype (CIMP). However, this epigenetic change alone could not account for reduced DUSP5 expression in CRC cells. Functionally, DUSP5 depletion failed to alter ERK signalling or proliferation in CRC cell lines, and its transgenic overexpression in the mouse intestine had minimal impact on normal intestinal homeostasis or tumour development. Our results suggest that DUSP5 plays a limited role in regulating ERK signalling associated with the growth of colorectal tumours, but that methylation the DUSP5 gene promoter can serve as an additional means of identifying CIMP-high colorectal cancers

    Nuclear stabilization of p53 requires a functional nucleolar surveillance pathway

    No full text
    The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood. Using genome-wide loss-of-function screens, we demonstrate the ribosome biogenesis axis as the most potent class of genes whose disruption stabilizes p53. Mechanistically, we identify genes critical for regulation of this pathway, including HEATR3. By selectively disabling the nucleolar surveillance pathway, we demonstrate that it is essential for the ability of all nuclear-acting stresses, including DNA damage, to induce p53 accumulation. Our data support a paradigm whereby the nucleolar surveillance pathway is the central integrator of stresses that regulate nuclear p53 abundance, ensuring that ribosome biogenesis is hardwired to cellular proliferative capacity.ISSN:2666-3864ISSN:2211-124

    Nuclear stabilization of p53 requires a functional nucleolar surveillance pathway

    No full text
    The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood. Using genome-wide loss-of-function screens, we demonstrate the ribosome biogenesis axis as the most potent class of genes whose disruption stabilizes p53. Mechanistically, we identify genes critical for regulation of this pathway, including HEATR3. By selectively disabling the nucleolar surveillance pathway, we demonstrate that it is essential for the ability of all nuclear-acting stresses, including DNA damage, to induce p53 accumulation. Our data support a paradigm whereby the nucleolar surveillance pathway is the central integrator of stresses that regulate nuclear p53 abundance, ensuring that ribosome biogenesis is hardwired to cellular proliferative capacity
    corecore