190 research outputs found

    Holding solution pH and composition consistently improve vase life of rose, lily and gerbera

    Get PDF
    We assessed the influence of postharvest pulsing solutions pH and composition on cut flower quality of rose (Rosa hybrida cvs. Avalanche and Black Magic), gerbera (Gerbera jamesonii cv. Beaudine) and lily (Lilium × elegans cv. Fangio) under room (20±2 °C) and cold storage (4±1 °C) conditions. Cut flowers were placed in different acidic (pH, 3.5 - 4) or basic (pH, 7.0 - 7.5) preservative solutions containing water, sugar 5% (flower food), 100 mg/L silver nitrate (AgNO3 act as a bactericide), or a commercial product (2% sugar + bactericide and fungicide). Acidic solutions had higher or similar (never lower) vase life at both room and cold storage conditions and across species. In addition, vase life was 3-4 times longer in cold storage when compared to room conditions. Leaf chlorophyll concentrations for rose and lily were inconsistent or not significant across the species at both conditions (room and cold storage). The commercial preservative solution consistently and significantly had higher vase life than water for all tested cut flower species and under both room and cold storage environments. AgNO3 ranked second in terms of vase life enhancement. Overall, the use of only flower food (sugar) or bactericide (AgNO3) had a positive impact on vase life but only the combined use of a preservative substance (specifically at pH, 3.5 - 4.0) consistently guaranteed a high cut flower quality across flower species

    The impacts of social determinants of health and cardiometabolic factors on cognitive and functional aging in Colombian underserved populations

    Get PDF
    Global initiatives call for further understanding of the impact of inequity on aging across underserved populations. Previous research in low- and middle-income countries (LMICs) presents limitations in assessing combined sources of inequity and outcomes (i.e., cognition and functionality). In this study, we assessed how social determinants of health (SDH), cardiometabolic factors (CMFs), and other medical/social factors predict cognition and functionality in an aging Colombian population. We ran a cross-sectional study that combined theory- (structural equation models) and data-driven (machine learning) approaches in a population-based study (N = 23,694; M = 69.8 years) to assess the best predictors of cognition and functionality. We found that a combination of SDH and CMF accurately predicted cognition and functionality, although SDH was the stronger predictor. Cognition was predicted with the highest accuracy by SDH, followed by demographics, CMF, and other factors. A combination of SDH, age, CMF, and additional physical/psychological factors were the best predictors of functional status. Results highlight the role of inequity in predicting brain health and advancing solutions to reduce the cognitive and functional decline in LMICs.Fil: Santamaria Garcia, Hernando. Pontificia Universidad Javeriana; Colombia. Hospital Universitario San Ignacio; Colombia. University of California; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Moguilner, Sebastian Gabriel. Universidad de San Andrés; Argentina. Massachusetts General Hospital; Estados Unidos. Universidad Adolfo Ibañez; ChileFil: Rodriguez Villagra, Odir Antonio. Universidad de Costa Rica; Costa RicaFil: Botero Rodriguez, Felipe. Pontificia Universidad Javeriana; ColombiaFil: Pina Escudero, Stefanie Danielle. University of California; Estados UnidosFil: O’Donovan, Gary. Universidad Adolfo Ibañez; Chile. Universidad de los Andes; ColombiaFil: Albala, Cecilia. Universidad de Chile; ChileFil: Matallana, Diana. Fundacion Santa Fe de Bogota; Colombia. Hospital Universitario San Ignacio; Colombia. Pontificia Universidad Javeriana; ColombiaFil: Schulte, Michael. Universidad Adolfo Ibañez; ChileFil: Slachevsky, Andrea. Universidad del Desarrollo; Chile. Universidad de Chile; ChileFil: Yokoyama, Jennifer S.. University of California; Estados UnidosFil: Possin, Katherine. University of California; Estados UnidosFil: Ndhlovu, Lishomwa C.. Weill Cornell Medicine; Estados UnidosFil: Al-Rousan, Tala. University of California at San Diego; Estados UnidosFil: Corley, Michael J.. Weill Cornell Medicine; Estados UnidosFil: Kosik, Kenneth. University of California; Estados UnidosFil: Muniz Terrera, Graciela. University of Edinburgh; Reino Unido. Ohio University; Estados UnidosFil: Miranda, J. Jaime. George Institute For Global Health; Australia. Cronicas Centro de Excelencia En Enfermedades Crónicas; Perú. Universidad Peruana Cayetano Heredia; PerúFil: Ibañez, Agustin Mariano. Universidad de San Andrés; Argentina. Trinity College Dublin; Irlanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California; Estados Unidos. Universidad Adolfo Ibañez; Chil

    Expanding the genetic heterogeneity of intellectual disability

    Get PDF
    Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms

    Characterizing the morbid genome of ciliopathies

    Get PDF
    Background Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete. Results We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their “mutation load” beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population. Conclusions Our study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies

    Factors influencing the higher incidence of tuberculosis among migrants and ethnic minorities in the UK.

    Get PDF
    Migrants and ethnic minorities in the UK have higher rates of tuberculosis (TB) compared with the general population. Historically, much of the disparity in incidence between UK-born and migrant populations has been attributed to differential pathogen exposure, due to migration from high-incidence regions and the transnational connections maintained with TB endemic countries of birth or ethnic origin. However, focusing solely on exposure fails to address the relatively high rates of progression to active disease observed in some populations of latently infected individuals. A range of factors that disproportionately affect migrants and ethnic minorities, including genetic susceptibility, vitamin D deficiency and co-morbidities such as diabetes mellitus and HIV, also increase vulnerability to infection with Mycobacterium tuberculosis (M.tb) or reactivation of latent infection. Furthermore, ethnic socio-economic disparities and the experience of migration itself may contribute to differences in TB incidence, as well as cultural and structural barriers to accessing healthcare. In this review, we discuss both biological and anthropological influences relating to risk of pathogen exposure, vulnerability to infection or development of active disease, and access to treatment for migrant and ethnic minorities in the UK

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Thyroid nodules and differentiated thyroid cancer: update on the Brazilian consensus

    Full text link

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism

    Get PDF
    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability
    corecore