12 research outputs found

    Ruminant Brucellosis in the Kafr El Sheikh Governorate of the Nile Delta, Egypt: Prevalence of a Neglected Zoonosis

    Get PDF
    Brucellosis is a zoonosis of mammals caused by bacteria of the genus Brucella. It is responsible for a vast global burden imposed on human health through disability and on animal productivity. In humans brucellosis causes a range of flu-like symptoms and chronic debilitating illness. In livestock brucellosis causes economic losses as a result of abortion, infertility and decreased milk production. The main routes for human infection are consumption of contaminated dairy products and contact with infected ruminants. The control of brucellosis in humans depends on its control in ruminants, for which accurate estimates of the frequency of infection are very useful, especially in areas with no previous frequency estimates. We studied the seroprevalence of brucellosis and its geographic distribution among domestic ruminants in one governorate of the Nile Delta region, Egypt. In the study area, the seroprevalence of ruminant brucellosis is very high and has probably increased considerably since the early 1990s. The disease is widespread but more concentrated around major animal markets. These findings question the efficacy of the control strategy in place and highlight the high infection risk for the animal and human populations of the area and the urgent need for an improved control strategy

    MODELING AND OPTIMIZATION OF THIN-FILM SOLAR THERMOELECTRIC COOLING DEVICES

    No full text
    We present a mathematical model for a thin-film solar thermoelectric cooling and power generation depending on current flow at the interface between two different materials. Based on the direction of the current flow, an amount of thermal energy is absorbed or dissipated to offset the disparity in thermal energy between the two key materials. The reliability of thermoelectric energy transfer is obtained in terms of the power generation mode by applying two boundary clauses, one is the external heat input and the other is the temperature at the superior surface. Accordingly, to achieve an efficient and steady-state thermophotovoltaic process due to a thin-film solar cell system, a better understating of the solar energy conversion is needed. The calculated results owing to the process of solar cell conversion provide important intrinsic reliability for thin-film solar cells. with this approach, we address and analyze several modules composed of multiple n-type and p-type thermoelectric heterostructure that connected electrically in series and thermally in parallel

    SDF-1alpha concentration dependent modulation of RhoA and Rac1 modifies breast cancer and stromal cells interaction

    Get PDF
    International audienceBackground: The interaction of SDF-1alpha with its receptor CXCR4 plays a role in the occurrence of distant metastasis in many solid tumors. This interaction increases migration from primary sites as well as homing at distant sites.Methods: Here we investigated how SDF-1α could modulate both migration and adhesion of cancer cells through the modulation of RhoGTPases.Results: We show that different concentrations of SDF-1α modulate the balance of adhesion and migration in cancer cells. Increased migration was obtained at 50 and 100 ng/ml of SDF-1α; however migration was reduced at 200 ng/ml. The adhesion between breast cancer cells and BMHC was significantly increased by SDF-1α treatment at 200 ng/ml and reduced using a blocking monoclonal antibody against CXCR4. We showed that at low SDF-1α concentration, RhoA was activated and overexpressed, while at high concentration Rac1 was promoting SDF-1α mediating-cell adhesion.Conclusion: We conclude that SDF-1α concentration modulates migration and adhesion of breast cancer cells, by controlling expression and activation of RhoGTPases

    STAT3 transcription factor as target for anti-cancer therapy

    No full text
    corecore