1,130 research outputs found

    Macroanatomical and histological study of the structure of intercornual gland in Abaza (Capra Aegagrus) and Gurcu (Capra Falconeri) goats breeds

    Get PDF
    Background: The anatomical localisation of the odour glands, which increase activity during the reproduction period and help goat species to find each other, varies. Materials and methods: In our study, the anatomical and histological structures of the glands around the horn were examined in the Gurcu and Abaza goats, which are native breeds. In this study a total of 12 Abaza and Gurcu goat heads were used. Results: The area between the two horns and area at the back of the horns were shaved to remove all hair. The distance between the horns of both goat breeds was measured using an electronic calliper. The mean distance between the horns of the Abaza goats was determined as 36.80 ± 8.62 mm while this distance was 39.63 ± 4.10 mm for the Gurcu goats. Gland tissue that could not be seen anatomically under the skin was examined histologically. For the histological examination, skin samples were taken from the anterior, middle, right posterior and left posterior of the area between the two horns of both breeds. Crossman triple staining and haematoxylin and eosin staining were applied to the samples. Conclusions: Glandula intercornualis was found to be slightly caudal between the horns in both breeds and normal sebaceous glands were almost absent in the areas where these glands were found. Lobes and branched alveolar glands were located around the hair follicles

    PTPN22 gene polymorphism in Takayasu's arteritis

    Get PDF
    Objective. Takayasu's arteritis (TA) is a chronic, rare granulomatous panarteritis of unknown aetiology involving mainly the aorta and its major branches. In this study, genetic susceptibility to TA has been investigated by screening the functional single nucleotide polymorphism (SNP) of PTPN22 gene encoding the lymphoid-specific protein tyrosine phosphatase. Methods. Totally, 181 patients with TA and 177 healthy controls are genotyped by PCR-RFLP method for the SNP rs2476601 (A/G) of PTPN22 gene. Polymorphic region was amplified by PCR and digested with Xcm I enzyme. Results. Detected frequencies of heterozygous genotype (AG) were 5.1% (9/177) in control group and 3.8% (7/181) in TA group (P = 0.61, odds ratio: 0.75, 95% CI: 0.3, 2.0). No association with angiographic type, vascular involvement or prognosis of TA was observed either. Conclusion. The distribution of PTPN22 polymorphism did not reveal any association with TA in Turkey. © The Author 2008. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved

    Enhanced catalytic performance of MnxOy-Na2WO4/SiO2 for the oxidative coupling of methane using an ordered mesoporous silica support

    Get PDF
    The oxidative coupling of methane is a highly promising reaction for its direct conversion. Silica supported MnxOy–Na2WO4 is a suitable catalyst for this reaction. In this study, a variety of different SiO2 materials have been tested as supports. Surprisingly, the application of ordered mesoporous silicas, here exemplarily shown for SBA-15 as support materials, greatly enhances the catalytic performance. The CH4 conversion increased two fold and also the C2 selectivity is strongly increased

    Silica material variation for the Mn<sub>x</sub>O<sub>y</sub>-Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub>

    Get PDF
    The oxidative coupling of methane (OCM) is one of the best methods for the direct conversion of methane.Among the known OCM catalysts, MnxOy-Na2WO4/SiO2 is a promising candidate for an industrial appli-cation, showing a high methane conversion and C2 selectivity, with a good stability during long-termcatalytic activity tests. In the present study, some results have been already published and discussedbriefly in our previous short communication. However, we herein investigated comprehensively theinfluence of various silica support materials on the performance of the MnxOy-Na2WO4/SiO2 systemin the OCM by means of ex situ and in situ XRD, BET, SEM and TEM characterization methods andshowed new results to reveal possible support effects on the catalyst. The catalytic performance of most MnxOy-Na2WO4/SiO2 catalysts supported by different silica support materials did not differ substan-tially. However, the performance of the SBA-15 supported catalyst was outstanding and the methaneconversion was nearly twofold higher in comparison to the other silica supported catalysts at similar C2 selectivity as shown before in the communication. The reason of this substantial increase in performancecould be the ordered mesoporous structure of the SBA-15 support material, homogeneous dispersion ofactive components and high number of active sites responsible for the OCM

    Variability in the summer movements, habitat use and thermal biology of two fish species in a temperate river

    Get PDF
    The ability of fish to cope with warm water temperatures in summer depends on factors including their thermal traits and the ability of individuals to access cool-water refugia. Knowledge is highly limited on the in situ responses of many fishes to elevated summer temperatures, including whether they express behavioural thermoregulation. The responses of two riverine species to summer water temperatures were tested here using the movement metrics, spatial habitat use and body temperatures of individual European barbel Barbus barbus (‘barbel’) and common bream Abramis brama (‘bream’) versus river temperatures. Acoustic biotelemetry was applied in the lower River Severn basin, western Britain, in summer 2021 (barbel) and 2022 (bream), where individuals could move across > 150 km of river, including a tributary of cooler water. Across all individuals, bream occupied 37 km of river length (mainstem only), with low inter-individual variability in their spatial habitat use, movements and body temperatures. In contrast, barbel occupied 62 km of river (main river/tributary), with relatively high inter-individual variability in spatial habitat use, movements and body temperatures, with higher variation in body temperatures as river temperatures increased (maximum mean daily temperature difference between individuals on the same day: 4.2 °C). Although warmer individuals generally moved more, their activity was greatest at relatively low temperatures and higher flows, and neither species revealed any evidence of behavioural thermoregulation during elevated temperatures. Enabling phenotypically diverse fish populations to express their natural behaviours and thermal preferences in summer water temperatures thus requires maintaining their free-ranging in thermally heterogenous habitats

    Neutralization of SARS-CoV-2 by highly potent, hyperthermostable, and mutation-tolerant nanobodies

    Get PDF
    Monoclonal anti-SARS-CoV-2 immunoglobulins represent a treatment option for COVID-19. However, their production in mammalian cells is not scalable to meet the global demand. Single-domain (VHH) antibodies (also called nanobodies) provide an alternative suitable for microbial production. Using alpaca immune libraries against the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein, we isolated 45 infection-blocking VHH antibodies. These include nanobodies that can withstand 95°C. The most effective VHH antibody neutralizes SARS-CoV-2 at 17–50 pM concentration (0.2–0.7 µg per liter), binds the open and closed states of the Spike, and shows a tight RBD interaction in the X-ray and cryo-EM structures. The best VHH trimers neutralize even at 40 ng per liter. We constructed nanobody tandems and identified nanobody monomers that tolerate the K417N/T, E484K, N501Y, and L452R immune-escape mutations found in the Alpha, Beta, Gamma, Epsilon, Iota, and Delta/Kappa lineages. We also demonstrate neutralization of the Beta strain at low-picomolar VHH concentrations. We further discovered VHH antibodies that enforce native folding of the RBD in the E. coli cytosol, where its folding normally fails. Such “fold-promoting” nanobodies may allow for simplified production of vaccines and their adaptation to viral escape-mutations

    Divergent in situ expression of IL-31 and IL-31RA between bullous pemphigoid and pemphigus vulgaris

    Get PDF
    Bullous pemphigoid (BP) and pemphigus vulgaris (PV) are two major autoimmune blistering skin diseases. Unlike PV, BP is accompanied by intense pruritus, suggesting possible involvement of the pruritogenic cytokine IL-31. However, the underlying mechanisms of the clinical difference between BP and PV in terms of pruritus are not fully understood. To compare the expression levels of IL-31 and its receptor IL-31RA in the lesional skin, including peripheral nerves in BP and PV patients, immunohistochemical staining for IL-31 and IL-31RA was performed in skin samples of BP and PV patients and healthy controls (HC). The IL-31RA-expressing area in epidermis and peripheral nerves was analysed using ImageJ and the percentage of positive cells for IL-31/IL-31RA in dermal infiltrating cells was manually quantified. Quantitative analyses revealed that IL-31/IL-31RA expressions in the epidermis and dermal infiltrate were significantly increased in BP compared to PV and HC. The difference between BP and PV became more obvious when advanced bullous lesions were compared. Peripheral nerves in BP lesions presented significantly higher IL-31RA expression compared to PV lesions. In conclusion, we found significantly augmented expressions of IL-31/IL-31RA in BP lesions, including peripheral nerves, in comparison to PV. These results suggest a possible contribution of IL-31/IL-31RA signalling to the difference between BP and PV in the facilitation of pruritus and local skin inflammation, raising the possibility of therapeutic targeting of the IL-31/IL-31RA pathway in BP patients
    corecore